Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Cell Cardiol ; 139: 148-163, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31958467

RESUMO

Chronic pressure overload-induced left ventricular hypertrophy in heart is preceded by a metabolic perturbation that prefers glucose over lipid as substrate for energy requirement. Here, we establish C/EBPß (CCAAT/enhancer-binding protein ß) as an early marker of the metabolic derangement that triggers the imbalance in fatty acid (FA) oxidation and glucose uptake with increased lipid accumulation in cardiomyocytes during pathological hypertrophy, leading to contractile dysfunction and endoplasmic reticulum (ER) stress. This is the first study that shows that myocardium-targeted C/EBPß knockdown prevents the impaired cardiac function during cardiac hypertrophy led by maladaptive metabolic response with persistent hypertrophic stimuli, whereas its targeted overexpression in control increases lipid accumulation significantly compared to control hearts. A new observation from this study was the dual and opposite transcriptional regulation of the alpha and gamma isoforms of Peroxisomal proliferator activated receptors (PPARα and PPARγ) by C/EBPß in hypertrophied cardiomyocytes. Before the functional and structural remodeling sets in the diseased myocardium, C/EBPß aggravates lipid accumulation with the aid of the increased FA uptake involving induced PPARγ expression and decreased fatty acid oxidation (FAO) by suppressing PPARα expression. Glucose uptake into cardiomyocytes was greatly increased by C/EBPß via PPARα suppression. The activation of mammalian target of rapamycin complex-1 (mTORC1) during increased workload in presence of glucose as the only substrate was prevented by C/EBPß knockdown, thereby abating contractile dysfunction in cardiomyocytes. Our study thus suggests that C/EBPß may be considered as a novel cellular marker for deranged metabolic milieu before the heart pathologically remodels itself during hypertrophy.


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Cardiomegalia/metabolismo , Cardiomegalia/fisiopatologia , Coração/fisiopatologia , Trifosfato de Adenosina/metabolismo , Animais , Biomarcadores/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/genética , Cardiomegalia/genética , Cardiomegalia/patologia , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica , Glucose/metabolismo , Metabolismo dos Lipídeos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Miocárdio/metabolismo , Oxirredução , Consumo de Oxigênio , PPAR alfa/genética , PPAR alfa/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Ratos Wistar , Estresse Fisiológico
2.
Lipids ; 53(5): 539-545, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-30070366

RESUMO

The phospholipids of two moss samples Oreoweisia laxifolia (Hookf.) Kindb. (family-Dicranaceae Schimp.) and Leptodontium viticulosoides (P. Beauv.) Wijk & Margad (family-Pottiaceae Schimp.) of the Eastern Himalayan Biodiversity Hotspot were investigated to find out any peculiarity in their fatty acid profiles. Detailed analysis of phospholipid classes and the respective fatty acids was performed using high-performance thin-layer chromatography and gas chromatography-mass spectrometry. An array of different saturated and unsaturated fatty acids were detected in both the samples. Although it has been proposed previously that acetylenic fatty acids are associated only with triacylglycerol of storage lipids, the most striking observation of the present investigation is the abundance of an acetylenic fatty acid, octadeca-6-yn-9,12,15-trienoic acid (18:4a), or Dicranin, in the phospholipids of both the mosses. The position of the triple bond in the hydrocarbon chain of the fatty acids was confirmed by dimethyloxazoline derivatization of fatty acids and their characteristic mass fragmentation pattern. The occurrence of Dicranin in phospholipids and in the Pottiaceae family is reported for the first time, with substantial explanations of the observed results. This may raise the issue of rethinking "Dicranin" as a chemotaxonomic marker of Dicranaceae.


Assuntos
Biodiversidade , Briófitas/química , Ácidos Linolênicos/análise , Fosfolipídeos/química , Índia
3.
Pharm Biol ; 54(8): 1474-82, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26864460

RESUMO

Context The underground edible tuber of Dioscorea alata L. (Dioscoreaceae) is a functional food with high nutritive value and therapeutic potential. The tuber is known to possess anti-inflammatory properties in traditional medicine. Objective The present study explores the anti-inflammatory activity and standardisation of D. alata tuber hydromethanol extract. Materials and methods Hydromethanol extract (70%) of D. alata tuber was chemically characterised using HPLC and GC-MS techniques. Murine lymphocytes were cultured for 48 h with six different concentrations (0-80 µg/mL) of the extract. The expression of nitric oxide (NO), TNF-α, COX-1, COX-2, and PGE2 were evaluated using colorimetric and ELISA methods. Results Dioscorea alata extract inhibited the expression of NO and TNF-α with an IC50 value of 134.51 ± 6.75 and 113.30 ± 7.44 µg/mL, respectively. The IC50 values for inhibition of total COX, COX-1, COX-2 activities and PGE2 level were 41.96 ± 3.07, 141.41 ± 8.99, 32.50 ± 1.69, and 186.34 ± 15.36 µg/mL, respectively. Inhibition of PGE2 level and COX-2 activity was positively correlated (R(2) = 0.9393). Gallic acid (GA), 4-hydroxy benzoic acid (4HBA), syringic acid (SYA), p-coumaric acid (PCA), and myricetin (MY) were identified and quantified using HPLC. GC-MS analysis revealed the presence of 13 different phytocompounds such as hexadecanoic acid, methyl stearate, cinnamyl cinnamate, and squalene. Conclusion The D. alata extract significantly down-regulated the pro-inflammatory signals in a gradual manner compared with control (0 µg/mL). Different bioactive phytocompounds individually possessing anti-inflammatory activities contributed to the overall bioactivity of the D. alata tuber extract.


Assuntos
Anti-Inflamatórios/farmacologia , Dioscorea , Linfócitos/efeitos dos fármacos , Metanol/química , Extratos Vegetais/farmacologia , Solventes/química , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Dioscorea/química , Relação Dose-Resposta a Droga , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Mediadores da Inflamação/metabolismo , Linfócitos/imunologia , Linfócitos/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Óxido Nítrico/metabolismo , Fitoterapia , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Tubérculos , Plantas Medicinais , Fatores de Tempo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...