Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
J Antimicrob Chemother ; 79(4): 851-858, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38380682

RESUMO

BACKGROUND: The emergence of macrolide and tetracycline resistance within Pasteurella multocida isolated from feedlot cattle and the dominance of ST394 in Australia was reported recently. OBJECTIVES: To establish the genetic context of the resistance genes in P. multocida 17BRD-035, the ST394 reference genome, and conduct a molecular risk assessment of their ability to disperse laterally. METHODS: A bioinformatic analysis of the P. multocida 17BRD-035 genome was conducted to determine if integrative conjugative elements (ICEs) carrying resistance genes, which hamper antibiotic treatment options locally, are in circulation in Australian feedlots. RESULTS: A novel element, ICE-PmuST394, was characterized in P. multocida 17BRD-035. It was also identified in three other isolates (two ST394s and a ST125) in Australia and is likely present in a genome representing P. multocida ST79 from the USA. ICE-PmuST394 houses a resistance module carrying two variants of the blaROB gene, blaROB-1 and blaROB-13, and the macrolide esterase gene, estT. The resistance gene combination on ICE-PmuST394 confers resistance to ampicillin and tilmicosin, but not to tulathromycin and tildipirosin. Our analysis suggests that ICE-PmuST394 is circulating both by clonal expansion and horizontal transfer but is currently restricted to a single feedlot in Australia. CONCLUSIONS: ICE-PmuST394 carries a limited number of unusual antimicrobial resistance genes but has hotspots that facilitate genomic recombination. The element is therefore amenable to hosting more resistance genes, and therefore its presence (or dispersal) should be regularly monitored. The element has a unique molecular marker, which could be exploited for genomic surveillance purposes locally and globally.


Assuntos
Pasteurella multocida , Animais , Bovinos , Pasteurella multocida/genética , Austrália , Antibacterianos/farmacologia , Macrolídeos/farmacologia
2.
mSystems ; 8(5): e0123622, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37675998

RESUMO

IMPORTANCE: Extraintestinal pathogenic Escherichia coli (ExPEC) sequence type (ST) 38 is one of the top 10 human pandemic lineages. Although a major cause of urinary tract and blood stream infections, ST38 has been poorly characterized from a global phylogenomic perspective. A comprehensive genome-scale analysis of 925 ST38 isolate genomes identified two broad ancestral clades and linkage of discrete ST38 clusters with specific bla CTX-M variants. In addition, the clades and clusters carry important virulence genes, with diverse but poorly characterized plasmids. Numerous putative interhost and environment transmission events were identified here by the presence of ST38 clones (defined as isolates with ≤35 SNPs) within humans, companion animals, food sources, urban birds, wildlife, and the environment. A small cluster of international ST38 clones from diverse sources, likely representing progenitors of a hospital outbreak that occurred in Brisbane, Australia, in 2017, was also identified. Our study emphasizes the importance of characterizing isolate genomes derived from nonhuman sources and geographical locations, without any selection bias.


Assuntos
Infecções por Escherichia coli , Escherichia coli Extraintestinal Patogênica , Animais , Humanos , Escherichia coli/genética , Infecções por Escherichia coli/epidemiologia , Filogenia , Plasmídeos
3.
Vet Microbiol ; 283: 109773, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37201306

RESUMO

Pasteurella multocida causes a range of diseases in many host species throughout the world, including bovine respiratory disease (BRD) which is predominantly seen in feedlot cattle. This study assessed genetic diversity among 139 P. multocida isolates obtained from post-mortem lung swabs of BRD-affected feedlot cattle in four Australian states: New South Wales, Queensland, South Australia, and Victoria during 2014-2019. Whole-genome sequencing (WGS) was used to determine capsular serogroup, lipopolysaccharide genotypes, multi-locus sequence types and phylogenetic relationships. Two capsular types (A and D), with most isolates (132/139; 95%) belonging to type A; and three lipopolysaccharide (LPS) genotypes were identified (L1 [6/139; 4.3%], L3 [124/139; 89.2%] and L6 [9/139; 6.4%)]). Multi-locus sequence types (STs) ST9, ST13, ST17, ST20, ST36, ST50, ST58, ST79, ST124, ST125, ST132, ST167, ST185, ST327, ST394, and three novel STs [ST396, ST397, and ST398] were identified, with ST394 (59/139; 42.4%) and ST79 (44/139; 32%) the most prevalent in all four states. Isolates displaying phenotypic resistance to single, dual or multiple antibiotics (macrolide, tetracycline and aminopenicillins) were predominantly ST394 (23/139; 17%). Laterally mobile elements identified in the resistant ST394 isolates included small plasmids, encoding macrolide and/or tetracycline resistance, distributed in all states; and chromosomally located integrative conjugative elements (ICEs) (4 ST394 and 1 ST125) from the same Queensland feedlot. This study highlights the genomic diversity, epidemiological relationships and AMR associations in bovine P. multocida isolates from Australia and provides insight into the unique ST prevalence compared to other major beef-producing countries.


Assuntos
Doenças dos Bovinos , Infecções por Pasteurella , Pasteurella multocida , Doenças Respiratórias , Bovinos , Animais , Pasteurella multocida/genética , Lipopolissacarídeos , Filogenia , Doenças dos Bovinos/epidemiologia , Antibacterianos/farmacologia , Doenças Respiratórias/veterinária , Genômica , Macrolídeos , Vitória , Infecções por Pasteurella/epidemiologia , Infecções por Pasteurella/veterinária
4.
Nat Commun ; 14(1): 1530, 2023 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-36934086

RESUMO

Even in the setting of optimal resuscitation in high-income countries severe sepsis and septic shock have a mortality of 20-40%, with antibiotic resistance dramatically increasing this mortality risk. To develop a reference dataset enabling the identification of common bacterial targets for therapeutic intervention, we applied a standardized genomic, transcriptomic, proteomic and metabolomic technological framework to multiple clinical isolates of four sepsis-causing pathogens: Escherichia coli, Klebsiella pneumoniae species complex, Staphylococcus aureus and Streptococcus pyogenes. Exposure to human serum generated a sepsis molecular signature containing global increases in fatty acid and lipid biosynthesis and metabolism, consistent with cell envelope remodelling and nutrient adaptation for osmoprotection. In addition, acquisition of cholesterol was identified across the bacterial species. This detailed reference dataset has been established as an open resource to support discovery and translational research.


Assuntos
Sepse , Infecções Estafilocócicas , Humanos , Antibacterianos/uso terapêutico , Proteômica , Sepse/microbiologia , Bactérias , Escherichia coli , Klebsiella , Testes de Sensibilidade Microbiana
6.
Emerg Microbes Infect ; 9(1): 1780-1792, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32686595

RESUMO

The H30Rx subclade of Escherichia coli ST131 is a clinically important, globally dispersed pathogenic lineage that typically displays resistance to fluoroquinolones and extended spectrum ß-lactams. Isolates EC233 and EC234, variants of ST131-H30Rx with a novel sequence type (ST) 8196, isolated from unrelated patients presenting with bacteraemia at a Sydney Hospital in 2014 are characterised here. EC233 and EC234 are phylogroup B2, serotype O25:H4A, and resistant to ampicillin, amoxicillin, cefoxitin, ceftazidime, ceftriaxone, ciprofloxacin, norfloxacin and gentamicin and are likely clonal. Both harbour an IncFII_2 plasmid (pSPRC_Ec234-FII) that carries most of the resistance genes on an IS26 associated translocatable unit, two small plasmids and a novel IncI1 plasmid (pSPRC_Ec234-I). SNP-based phylogenetic analysis of the core genome of representatives within the ST131 clonal complex places both isolates in a subclade with three clinical Australian ST131-H30Rx clade-C isolates. A MrBayes phylogeny analysis of EC233 and EC234 indicates ST8196 share a most recent common ancestor with ST131-H30Rx strain EC70 isolated from the same hospital in 2013. Our study identified genomic hallmarks that define the ST131-H30Rx subclade in the ST8196 isolates and highlights a need for unbiased genomic surveillance approaches to identify novel high-risk MDR E. coli pathogens that impact healthcare facilities.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Infecções por Escherichia coli/epidemiologia , Escherichia coli/genética , beta-Lactamases/genética , Austrália/epidemiologia , Bacteriemia/tratamento farmacológico , Bacteriemia/microbiologia , Escherichia coli/classificação , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Fluoroquinolonas/farmacologia , Genoma Bacteriano/genética , Humanos , Testes de Sensibilidade Microbiana , Filogenia , Plasmídeos/genética , beta-Lactamas/farmacologia
7.
Microorganisms ; 8(6)2020 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-32545892

RESUMO

Antibiotic resistance genes (ARGs) including those from the blaCTX-M family and mcr-1 that encode resistance to extended spectrum ß-lactams and colistin, respectively, have been linked with IncHI2 plasmids isolated from swine production facilities globally but not in IncHI2 plasmids from Australia. Here we describe the first complete sequence of a multiple drug resistance Australian IncHI2-ST4 plasmid, pTZ41_1P, from a commensal E. coli from a healthy piglet. pTZ41_1P carries genes conferring resistance to heavy-metals (copper, silver, tellurium and arsenic), ß-lactams, aminoglycosides and sulphonamides. The ARGs reside within a complex resistance locus (CRL) that shows considerable sequence identity to a CRL in pSDE_SvHI2, an IncHI2:ST3 plasmid from an enterotoxigenic E. coli with serotype O157:H19 of porcine origin that caused substantial losses to swine production operations in Australia in 2007. pTZ41_1P is closely related to IncHI2 plasmids found in E. coli and Salmonella enterica from porcine, avian and human sources in Europe and China but it does not carry genes encoding resistance to clinically-important antibiotics. We identified regions of IncHI2 plasmids that contribute to the genetic plasticity of this group of plasmids and highlight how they may readily acquire new resistance gene cargo. Genomic surveillance should be improved to monitor IncHI2 plasmids.

8.
Microb Genom ; 6(5)2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32374251

RESUMO

This study sought to assess the genetic variability of Escherichia coli isolated from bloodstream infections (BSIs) presenting at Concord Hospital, Sydney during 2013-2016. Whole-genome sequencing was used to characterize 81 E. coli isolates sourced from community-onset (CO) and hospital-onset (HO) BSIs. The cohort comprised 64 CO and 17 HO isolates, including 35 multidrug-resistant (MDR) isolates exhibiting phenotypic resistance to three or more antibiotic classes. Phylogenetic analysis identified two major ancestral clades. One was genetically diverse with 25 isolates distributed in 16 different sequence types (STs) representing phylogroups A, B1, B2, C and F, while the other comprised phylogroup B2 isolates in subclades representing the ST131, ST73 and ST95 lineages. Forty-seven isolates contained a class 1 integron, of which 14 carried blaCTX -M-gene. Isolates with a class 1 integron carried more antibiotic resistance genes than isolates without an integron and, in most instances, resistance genes were localized within complex resistance loci (CRL). Resistance to fluoroquinolones could be attributed to point mutations in chromosomal parC and gyrB genes and, in addition, two isolates carried a plasmid-associated qnrB4 gene. Co-resistance to fluoroquinolone and broad-spectrum beta-lactam antibiotics was associated with ST131 (HO and CO), ST38 (HO), ST393 (CO), ST2003 (CO) and ST8196 (CO and HO), a novel ST identified in this study. Notably, 10/81 (12.3 %) isolates with ST95 (5 isolates), ST131 (2 isolates), ST88 (2 isolates) and a ST540 likely carry IncFII-IncFIB plasmid replicons with a full spectrum of virulence genes consistent with the carriage of ColV-like plasmids. Our data indicate that IncF plasmids play an important role in shaping virulence and resistance gene carriage in BSI E. coli in Australia.


Assuntos
Bacteriemia/microbiologia , Infecções Comunitárias Adquiridas/microbiologia , Infecção Hospitalar/microbiologia , Infecções por Escherichia coli/microbiologia , Escherichia coli/classificação , Sequenciamento Completo do Genoma/métodos , Austrália , Estudos de Coortes , Farmacorresistência Bacteriana Múltipla , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Fluoroquinolonas/farmacologia , Genoma Bacteriano , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Filogenia , Plasmídeos/genética , Mutação Puntual
9.
Case Rep Vet Med ; 2020: 9785861, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32015929

RESUMO

We describe three cases of osteoarticular infection (OAI) in young thoroughbred horses in which the causative organism was identified by MALDI-TOF as Kingella species. The pattern of OAI resembled that reported with Kingella infection in humans. Analysis by 16S rRNA PCR enabled construction of a phylogenetic tree that placed the isolates closer to Simonsiella and Alysiella species, rather than Kingella species. Average nucleotide identity (ANI) comparison between the new isolate and Kingella kingae and Alysiella crassa however revealed low probability that the new isolate belonged to either of these species. This preliminary analysis suggests the organism isolated is a previously unrecognised species.

10.
Microb Drug Resist ; 26(7): 787-793, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32031906

RESUMO

IncF ColV plasmids are important plasmid incompatibility group that are currently restricted to the Enterobacteriaceae. These plasmids carry an important repertoire of virulence-associated genes (VAGs) that contribute to the ability of avian pathogenic Escherichia coli to cause disease in poultry. VAGs found on ColV plasmids have also been linked to urosepsis and meningitis in humans but the mechanisms that elicit these disease conditions are not well understood. Recently we described the sequence of a ColV plasmid pSDJ2009-52F that carried the typical repertoire of VAGs and a complex resistance gene locus flanked by IS26, an insertion element that plays an important role in mobilizing antibiotic resistance genes on plasmids and genomic islands. We recovered complete ColV-like plasmid sequences from public databases that shared >80% sequence identity with pSDJ2009-52F in geographically diverse regions of the world over a 20-year timeframe. Previously we noted that pSDJ2009-52F carries a unique genetic signature in the class 1 integron within the complex resistance locus that was presumably created by the action of IS26. Here we show that most ColV-like plasmids that are closely related to pSDJ2009-52F also carry the same signature. Our studies provide insight into how these signature-bearing plasmids and the mobile genetic elements they carry traffic between E. coli sequence types over large geographic distances.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Plasmídeos/genética , Elementos de DNA Transponíveis , Proteínas de Escherichia coli/genética , Ilhas Genômicas , Humanos , Integrons/genética , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Virulência
11.
mSphere ; 4(3)2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-31118300

RESUMO

Salmonella genomic island 1 (SGI1) is an integrative genetic island first described in Salmonella enterica serovars Typhimurium DT104 and Agona in 2000. Variants of it have since been described in multiple serovars of S. enterica, as well as in Proteus mirabilis, Acinetobacter baumannii, Morganella morganii, and several other genera. The island typically confers resistance to older, first-generation antimicrobials; however, some variants carry blaNDM-1, blaVEB-6, and blaCTX-M15 genes that encode resistance to frontline, clinically important antibiotics, including third-generation cephalosporins. Genome sequencing studies of avian pathogenic Escherichia coli (APEC) identified a sequence type 117 (ST117) isolate (AVC96) with genetic features found in SGI1. The complete genome sequence of AVC96 was assembled from a combination of Illumina and single-molecule real-time (SMRT) sequence data. Analysis of the AVC96 chromosome identified a variant of SGI1-B located 18 bp from the 3' end of trmE, also known as the attB site, a known hot spot for the integration of genomic islands. This is the first report of SGI1 in wild-type E. coli The variant, here named SGI1-B-Ec1, was otherwise unremarkable, apart from the identification of ISEc43 in open reading frame (ORF) S023.IMPORTANCE SGI1 and variants of it carry a variety of antimicrobial resistance genes, including those conferring resistance to extended-spectrum ß-lactams and carbapenems, and have been found in diverse S. enterica serovars, Acinetobacter baumannii, and other members of the Enterobacteriaceae SGI1 integrates into Gram-negative pathogenic bacteria by targeting a conserved site 18 bp from the 3' end of trmE For the first time, we describe a novel variant of SGI1 in an avian pathogenic Escherichia coli isolate. The presence of SGI1 in E. coli is significant because it represents yet another lateral gene transfer mechanism to enhancing the capacity of E. coli to acquire and propagate antimicrobial resistance and putative virulence genes. This finding underscores the importance of whole-genome sequencing (WGS) to microbial genomic epidemiology, particularly within a One Health context. Further studies are needed to determine how widespread SGI1 and variants of it may be in Australia.


Assuntos
Farmacorresistência Bacteriana/genética , Escherichia coli/genética , Transferência Genética Horizontal , Ilhas Genômicas , Salmonella enterica/genética , Animais , Antibacterianos/farmacologia , Austrália , Aves/microbiologia , DNA Bacteriano/genética , Escherichia coli/patogenicidade , Sequenciamento Completo do Genoma
12.
Plasmid ; 102: 56-61, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30885788

RESUMO

IncHI2-ST1 plasmids play an important role in co-mobilizing genes conferring resistance to critically important antibiotics and heavy metals. Here we present the identification and analysis of IncHI2-ST1 plasmid pSPRC-Echo1, isolated from an Enterobacter hormaechei strain from a Sydney hospital, which predates other multi-drug resistant IncHI2-ST1 plasmids reported from Australia. Our time-resolved phylogeny analysis indicates pSPRC-Echo1 represents a new lineage of IncHI2-ST1 plasmids and show how their diversification relates to the era of antibiotics.


Assuntos
Filogenia , Plasmídeos/genética , Mapeamento Cromossômico , Elementos de DNA Transponíveis/genética , Fatores de Tempo
13.
Gut Pathog ; 11: 3, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30805030

RESUMO

BACKGROUND: Enterobacter hormaechei is an important emerging pathogen and a key member of the highly diverse Enterobacter cloacae complex. E. hormaechei strains can persist and spread in nosocomial environments, and often exhibit resistance to multiple clinically important antibiotics. However, the genomic regions that harbour resistance determinants are typically highly repetitive and impossible to resolve with standard short-read sequencing technologies. RESULTS: Here we used both short- and long-read methods to sequence the genome of a multidrug-resistant hospital isolate (C15117), which we identified as E. hormaechei. Hybrid assembly generated a complete circular chromosome of 4,739,272 bp and a fully resolved plasmid of 339,920 bp containing several antibiotic resistance genes. The strain also harboured a 34,857 bp repeat encoding copper resistance, which was present in both the chromosome and plasmid. Long reads that unambiguously spanned this repeat were required to resolve the chromosome and plasmid into separate replicons. CONCLUSION: This study provides important insights into the evolution and potential spread of antimicrobial resistance in a nosocomial E. hormaechei strain. More broadly, it further exemplifies the power of long-read sequencing technologies, particularly the Oxford Nanopore platform, for the characterisation of bacteria with complex resistance loci and large repeat elements.

14.
Microb Genom ; 5(2)2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30672731

RESUMO

Avian pathogenic Escherichia coli (APEC) cause widespread economic losses in poultry production and are potential zoonotic pathogens. Genome sequences of 95 APEC from commercial poultry operations in four Australian states that carried the class 1 integrase gene intI1, a proxy for multiple drug resistance (MDR), were characterized. Sequence types ST117 (22/95), ST350 (10/95), ST429 and ST57 (each 9/95), ST95 (8/95) and ST973 (7/95) dominated, while 24 STs were represented by one or two strains. FII and FIB repA genes were the predominant (each 93/95, 98 %) plasmid incompatibility groups identified, but those of B/O/K/Z (25/95, 26 %) and I1 (24/95, 25 %) were also identified frequently. Virulence-associated genes (VAGs) carried by ColV and ColBM virulence plasmids, including those encoding protectins [iss (91/95, 96 %), ompT (91/95, 96 %) and traT (90/95, 95 %)], iron-acquisition systems [sitA (88/95, 93 %), etsA (87/95, 92 %), iroN (84/95, 89 %) and iucD/iutA (84/95, 89 %)] and the putative avian haemolysin hylF (91/95, 96 %), featured prominently. Notably, mobile resistance genes conferring resistance to fluoroquinolones, colistin, extended-spectrum ß-lactams and carbapenems were not detected in the genomes of these 95 APEC but carriage of the sulphonamide resistance gene, sul1 (59/95, 63 %), the trimethoprim resistance gene cassettes dfrA5 (48/95, 50 %) and dfrA1 (25/95, 27 %), the tetracycline resistance determinant tet(A) (51/95, 55 %) and the ampicillin resistance genes blaTEM-1A/B/C (48/95, 52 %) was common. IS26 (77/95, 81 %), an insertion element known to capture and mobilize a wide spectrum of antimicrobial resistance genes, was also frequently identified. These studies provide a baseline snapshot of drug-resistant APEC in Australia and their role in the carriage of ColV-like virulence plasmids.


Assuntos
Farmacorresistência Bacteriana Múltipla/genética , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Escherichia coli/classificação , Escherichia coli/genética , Doenças das Aves Domésticas/microbiologia , Animais , Austrália , Toxinas Bacterianas/genética , Elementos de DNA Transponíveis , DNA Bacteriano/genética , Escherichia coli/patogenicidade , Proteínas de Escherichia coli/genética , Genoma Bacteriano , Integrases/genética , Plasmídeos , Análise de Sequência de DNA/métodos , Virulência/genética , Fatores de Virulência/genética , Sequenciamento Completo do Genoma
15.
Int J Antimicrob Agents ; 52(3): 430-435, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29966679

RESUMO

Sequence type 58 (ST58) phylogroup B1 Escherichia coli have been isolated from a wide variety of mammalian and avian hosts but are not noted for their ability to cause serious disease in humans or animals. Here we determined the genome sequences of two multidrug-resistant E. coli ST58 strains from urine and blood of one patient using a combination of Illumina and Single Molecule, Real-Time (SMRT) sequencing. Both ST58 strains were clonal and were characterised as serotype O8:H25, phylogroup B1 and carried a complex resistance locus/loci (CRL) that featured an atypical class 1 integron with a dfrA5 (trimethoprim resistance) gene cassette followed by only 24 bp of the 3'-CS. CRL that carry this particular integron have been described previously in E. coli from cattle, pigs and humans in Australia. The integron abuts a copy of Tn6029, an IS26-flanked composite transposon encoding blaTEM, sul2 and strAB genes that confer resistance to ampicillin, sulfathiazole and streptomycin, respectively. The CRL resides within a novel Tn2610-like hybrid Tn1721/Tn21 transposon on an IncF, ColV plasmid (pSDJ2009-52F) of 138 553 bp that encodes virulence associated genes implicated in life-threatening extraintestinal pathogenic E. coli (ExPEC) infections. Notably, pSDJ2009-52F shares high sequence identity with pSF-088-1, a plasmid reported in an E. coli ST95 strain from a patient with blood sepsis from a hospital in San Francisco. These data suggest that extraintestinal infections caused by E. coli carrying ColV-like plasmids, irrespective of their phylogroup or ST, may pose a potential threat to human health, particularly to the elderly and immunocompromised.


Assuntos
Antibacterianos/farmacologia , Elementos de DNA Transponíveis/genética , Farmacorresistência Bacteriana Múltipla/genética , Infecções por Escherichia coli/microbiologia , Escherichia coli/genética , Sepse/microbiologia , Infecções Urinárias/microbiologia , Austrália , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Genoma Bacteriano/genética , Humanos , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA , Virulência/genética , Sequenciamento Completo do Genoma
16.
Front Microbiol ; 9: 3212, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30671039

RESUMO

Escherichia coli ST405 is an emerging urosepsis pathogen, noted for carriage of bla CTX-M, bla NDM, and a repertoire of virulence genes comparable with O25b:H4-ST131. Extraintestinal and multidrug resistant E. coli ST405 are poorly studied in Australia. Here we determined the genome sequence of a uropathogenic, multiple drug resistant E. coli ST405 (strain 2009-27) from the mid-stream urine of a hospital patient in Sydney, Australia, using a combination of Illumina and SMRT sequencing. The genome of strain 2009-27 assembled into two unitigs; a chromosome comprising 5,287,472 bp and an IncB/O plasmid, pSDJ2009-27, of 89,176 bp. In silico and phenotypic analyses showed that strain 2009-27 is a serotype O102:H6, phylogroup D ST405 resistant to ampicillin, azithromycin, kanamycin, streptomycin, trimethoprim, and sulphafurazole. The genes encoding resistance to these antibiotics reside within a novel, mobile IS26-flanked transposon, identified here as Tn6242, in the chromosomal gene yjdA. Tn6242 comprises four modules that each carries resistance genes flanked by IS26, including a class 1 integron with dfrA17 and aadA5 gene cassettes, a variant of Tn6029, and mphA. We exploited unique genetic signatures located within Tn6242 to identify strains of ST405 from Danish patients that also carry the transposon in the same chromosomal location. The acquisition of Tn6242 into yjdA in ST405 is significant because it (i) is vertically inheritable; (ii) represents a reservoir of resistance genes that can transpose onto resident/circulating plasmids; and (iii) is a site for the capture of further IS26-associated resistance gene cargo.

18.
Microb Genom ; 3(12)2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29306352

RESUMO

Porcine faecal waste is a serious environmental pollutant. Carriage of antimicrobial-resistance genes (ARGs) and virulence-associated genes (VAGs), and the zoonotic potential of commensal Escherichia coli from swine are largely unknown. Furthermore, little is known about the role of commensal E. coli as contributors to the mobilization of ARGs between food animals and the environment. Here, we report whole-genome sequence analysis of 103 class 1 integron-positive E. coli from the faeces of healthy pigs from two commercial production facilities in New South Wales, Australia. Most strains belonged to phylogroups A and B1, and carried VAGs linked with extraintestinal infection in humans. The 103 strains belonged to 37 multilocus sequence types and clonal complex 10 featured prominently. Seventeen ARGs were detected and 97 % (100/103) of strains carried three or more ARGs. Heavy-metal-resistance genes merA, cusA and terA were also common. IS26 was observed in 98 % (101/103) of strains and was often physically associated with structurally diverse class 1 integrons that carried unique genetic features, which may be tracked. This study provides, to our knowledge, the first detailed genomic analysis and point of reference for commensal E. coli of porcine origin in Australia, facilitating tracking of specific lineages and the mobile resistance genes they carry.


Assuntos
Farmacorresistência Bacteriana Múltipla/genética , Escherichia coli/classificação , Escherichia coli/genética , Fezes/microbiologia , Microbiologia de Alimentos , Integrons/genética , Suínos/microbiologia , Animais , Austrália , Poluentes Ambientais , Escherichia coli/isolamento & purificação , Escherichia coli/patogenicidade , Transferência Genética Horizontal , Variação Genética , Humanos , Mutagênese Insercional , Simbiose , Virulência/genética , Sequenciamento Completo do Genoma , Zoonoses/microbiologia
20.
Front Microbiol ; 7: 843, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27379026

RESUMO

Contamination of waste effluent from hospitals and intensive food animal production with antimicrobial residues is an immense global problem. Antimicrobial residues exert selection pressures that influence the acquisition of antimicrobial resistance and virulence genes in diverse microbial populations. Despite these concerns there is only a limited understanding of how antimicrobial residues contribute to the global problem of antimicrobial resistance. Furthermore, rapid detection of emerging bacterial pathogens and strains with resistance to more than one antibiotic class remains a challenge. A comprehensive, sequence-based genomic epidemiological surveillance model that captures essential microbial metadata is needed, both to improve surveillance for antimicrobial resistance and to monitor pathogen evolution. Escherichia coli is an important pathogen causing both intestinal [intestinal pathogenic E. coli (IPEC)] and extraintestinal [extraintestinal pathogenic E. coli (ExPEC)] disease in humans and food animals. ExPEC are the most frequently isolated Gram negative pathogen affecting human health, linked to food production practices and are often resistant to multiple antibiotics. Cattle are a known reservoir of IPEC but they are not recognized as a source of ExPEC that impact human or animal health. In contrast, poultry are a recognized source of multiple antibiotic resistant ExPEC, while swine have received comparatively less attention in this regard. Here, we review what is known about ExPEC in swine and how pig production contributes to the problem of antibiotic resistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...