Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc IEEE Int Symp Biomed Imaging ; 2019: 414-417, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31327984

RESUMO

Graph convolutional neural networks (GCNNs) aim to extend the data representation and classification capabilities of convolutional neural networks, which are highly effective for signals defined on regular Euclidean domains, e.g. image and audio signals, to irregular, graph-structured data defined on non-Euclidean domains. Graph-theoretic tools that enable us to study the brain as a complex system are of great significance in brain connectivity studies. Particularly, in the context of Alzheimer's disease (AD), a neurodegenerative disorder associated with network dysfunction, graph-based tools are vital for disease classification and staging. Here, we implement and test a multi-class GCNN classifier for network-based classification of subjects on the AD spectrum into four categories: cognitively normal, early mild cognitive impairment, late mild cognitive impairment, and AD. We train and validate the network using structural connectivity graphs obtained from diffusion tensor imaging data. Using receiver operating characteristic curves, we show that the GCNN classifier outperforms a support vector machine classifier by margins that are reliant on disease category. Our findings indicate that the performance gap between the two methods increases with disease progression from CN to AD. We thus demonstrate that GCNN is a competitive tool for staging and classification of subjects on the AD spectrum.

2.
Inf Process Med Imaging ; 11492: 384-393, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31156312

RESUMO

Tau tangles are a pathological hallmark of Alzheimer?s disease (AD) with strong correlations existing between tau aggregation and cognitive decline. Studies in mouse models have shown that the characteristic patterns of tau spatial spread associated with AD progression are determined by neural connectivity rather than physical proximity between different brain regions. We present here a network diffusion model for tau aggregation based on longitudinal tau measures from positron emission tomography (PET) and structural connectivity graphs from diffusion tensor imaging (DTI). White matter fiber bundles reconstructed via tractography from the DTI data were used to compute normalized graph Laplacians which served as graph diffusion kernels for tau spread. By linearizing this model and using sparse source localization, we were able to identify distinct patterns of propagative and generative buildup of tau at a population level. A gradient descent approach was used to solve the sparsity-constrained optimization problem. Model fitting was performed on subjects from the Harvard Aging Brain Study cohort. The fitted model parameters include a scalar factor controlling the network-based tau spread and a network-independent seed vector representing seeding in different regions-of-interest. This parametric model was validated on an independent group of subjects from the same cohort. We were able to predict with reasonably high accuracy the tau buildup at a future time-point. The network diffusion model, therefore, successfully identifies two distinct mechanisms for tau buildup in the aging brain and offers a macroscopic perspective on tau spread.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...