Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(47): 23829-23839, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31685639

RESUMO

Regular physical exercise is the most efficient and accessible intervention known to promote healthy aging in humans. The molecular and cellular mechanisms that mediate system-wide exercise benefits, however, remain poorly understood, especially as applies to tissues that do not participate directly in training activity. The establishment of exercise protocols for short-lived genetic models will be critical for deciphering fundamental mechanisms of transtissue exercise benefits to healthy aging. Here we document optimization of a long-term swim exercise protocol for Caenorhabditis elegans and we demonstrate its benefits to diverse aging tissues, even if exercise occurs only during a restricted phase of adulthood. We found that multiple daily swim sessions are essential for exercise adaptation, leading to body wall muscle improvements in structural gene expression, locomotory performance, and mitochondrial morphology. Swim exercise training enhances whole-animal health parameters, such as mitochondrial respiration and midlife survival, increases functional healthspan of the pharynx and intestine, and enhances nervous system health by increasing learning ability and protecting against neurodegeneration in models of tauopathy, Alzheimer's disease, and Huntington's disease. Remarkably, swim training only during early adulthood induces long-lasting systemic benefits that in several cases are still detectable well into midlife. Our data reveal the broad impact of swim exercise in promoting extended healthspan of multiple C. elegans tissues, underscore the potency of early exercise experience to influence long-term health, and establish the foundation for exploiting the powerful advantages of this genetic model for the dissection of the exercise-dependent molecular circuitry that confers system-wide health benefits to aging adults.


Assuntos
Caenorhabditis elegans/fisiologia , Aprendizagem , Neuroproteção , Natação , Adaptação Fisiológica , Animais , Intestinos/fisiologia , Músculos/fisiologia , Fenômenos Fisiológicos do Sistema Nervoso
2.
Nat Commun ; 8: 14256, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28220799

RESUMO

Limiting the debilitating consequences of ageing is a major medical challenge of our time. Robust pharmacological interventions that promote healthy ageing across diverse genetic backgrounds may engage conserved longevity pathways. Here we report results from the Caenorhabditis Intervention Testing Program in assessing longevity variation across 22 Caenorhabditis strains spanning 3 species, using multiple replicates collected across three independent laboratories. Reproducibility between test sites is high, whereas individual trial reproducibility is relatively low. Of ten pro-longevity chemicals tested, six significantly extend lifespan in at least one strain. Three reported dietary restriction mimetics are mainly effective across C. elegans strains, indicating species and strain-specific responses. In contrast, the amyloid dye ThioflavinT is both potent and robust across the strains. Our results highlight promising pharmacological leads and demonstrate the importance of assessing lifespans of discrete cohorts across repeat studies to capture biological variation in the search for reproducible ageing interventions.


Assuntos
Caenorhabditis/efeitos dos fármacos , Patrimônio Genético , Longevidade/efeitos dos fármacos , Compostos Orgânicos/farmacologia , Animais , Benzotiazóis , Caenorhabditis/classificação , Caenorhabditis/genética , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/genética , Relação Dose-Resposta a Droga , Fertilidade/efeitos dos fármacos , Fertilidade/genética , Longevidade/genética , Reprodutibilidade dos Testes , Especificidade da Espécie , Tiazóis/farmacologia
3.
J Biol Chem ; 280(51): 41976-86, 2005 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-16239217

RESUMO

DEG/ENaC channel subunits are two transmembrane domain proteins that assemble into heteromeric complexes to perform diverse biological functions that include sensory perception, electrolyte balance, and synaptic plasticity. Hyperactivation of neuronally expressed DEG/ENaCs that conduct both Na+ and Ca2+, however, can potently induce necrotic neuronal death in vivo. For example, Caenorhabditis elegans DEG/ENaC MEC-4 comprises the core subunit of a touch-transducing ion channel critical for mechanosensation that when hyperactivated by a mec-4(d) mutation induces necrosis of the sensory neurons in which it is expressed. Thus, studies of the MEC-4 channel have provided insight into both normal channel biology and neurotoxicity mechanisms. Here we report on intragenic mec-4 mutations identified in a screen for suppressors of mec-4(d)-induced necrosis, with a focus on detailed characterization of allele bz2 that has the distinctive phenotype of inducing dramatic neuronal swelling without being fully penetrant for toxicity. The bz2 mutation encodes substitution A745T, which is situated in the intracellular C-terminal domain of MEC-4. We show that this substitution renders both MEC-4 and MEC-4(d) activity strongly temperature sensitive. In addition, we show that both in Xenopus oocytes and in vivo, substitution A745T disrupts channel trafficking or maintenance of the MEC-4 subunit at the cell surface. This is the first demonstration of a C-terminal domain that affects trafficking of a neuronally expressed DEG/ENaC. Moreover, this study reveals that neuronal swelling occurs prior to commitment to necrotic death and defines a powerful new tool for inducible necrosis initiation.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Mutação , Canais de Sódio/metabolismo , Temperatura , Animais , Sequência de Bases , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/genética , Primers do DNA , Proteínas de Fluorescência Verde/metabolismo , Imuno-Histoquímica , Masculino , Proteínas de Membrana , Transporte Proteico , Canais de Sódio/genética , Xenopus
4.
Nat Neurosci ; 7(12): 1337-44, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15543143

RESUMO

Hyperactivation of the Caenorhabditis elegans MEC-4 Na(+) channel of the DEG/ENaC superfamily (MEC-4(d)) induces neuronal necrosis through an increase in intracellular Ca(2+) and calpain activation. How exacerbated Na(+) channel activity elicits a toxic rise in cytoplasmic Ca(2+), however, has remained unclear. We tested the hypothesis that MEC-4(d)-induced membrane depolarization activates voltage-gated Ca(2+) channels (VGCCs) to initiate a toxic Ca(2+) influx, and ruled out a critical requirement for VGCCs. Instead, we found that MEC-4(d) itself conducts Ca(2+) both when heterologously expressed in Xenopus oocytes and in vivo in C. elegans touch neurons. Data generated using the Ca(2+) sensor cameleon suggest that an induced release of endoplasmic reticulum (ER) Ca(2+) is crucial for progression through necrosis. We propose a refined molecular model of necrosis initiation in which Ca(2+) influx through the MEC-4(d) channel activates Ca(2+)-induced Ca(2+) release from the ER to promote neuronal death, a mechanism that may apply to neurotoxicity associated with activation of the ASIC1a channel in mammalian ischemia.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Cálcio/metabolismo , Proteínas de Membrana/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Canais de Sódio/fisiologia , Amilorida/farmacologia , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/biossíntese , Proteínas de Caenorhabditis elegans/genética , Canais de Cálcio/biossíntese , Canais de Cálcio/genética , Células Cultivadas , Relação Dose-Resposta a Droga , Canais Epiteliais de Sódio , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Necrose , Canais de Sódio/biossíntese , Canais de Sódio/genética , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...