Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1385, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360978

RESUMO

The Eyes Absent proteins (EYA1-4) are a biochemically unique group of tyrosine phosphatases known to be tumour-promoting across a range of cancer types. To date, the targets of EYA phosphatase activity remain largely uncharacterised. Here, we identify Polo-like kinase 1 (PLK1) as an interactor and phosphatase substrate of EYA4 and EYA1, with pY445 on PLK1 being the primary target site. Dephosphorylation of pY445 in the G2 phase of the cell cycle is required for centrosome maturation, PLK1 localization to centrosomes, and polo-box domain (PBD) dependent interactions between PLK1 and PLK1-activation complexes. Molecular dynamics simulations support the rationale that pY445 confers a structural impairment to PBD-substrate interactions that is relieved by EYA-mediated dephosphorylation. Depletion of EYA4 or EYA1, or chemical inhibition of EYA phosphatase activity, dramatically reduces PLK1 activation, causing mitotic defects and cell death. Overall, we have characterized a phosphotyrosine signalling network governing PLK1 and mitosis.


Assuntos
Proteínas de Ciclo Celular , Proteínas Serina-Treonina Quinases , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Tirosina/metabolismo , Mitose , Centrossomo/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Células HeLa , Proteínas Nucleares/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Transativadores/metabolismo
2.
Int J Mol Sci ; 23(6)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35328431

RESUMO

A useful model for determining the mechanisms by which actin and actin binding proteins control cellular architecture is the Drosophila melanogaster process of spermatogenesis. During the final step of spermatogenesis, 64 syncytial spermatids individualized as stable actin cones move synchronously down the axonemes and remodel the membranes. To identify new genes involved in spermatid individualization, we screened a collection of Drosophila male-sterile mutants and found that, in the line Z3-5009, actin cones formed near to the spermatid nuclei but failed to move, resulting in failed spermatid individualization. However, we show by phalloidin actin staining, electron microscopy and immunocytochemical localization of several actin binding proteins that the early cones had normal structure. We sequenced the genome of the Z3-5009 line and identified mutations in the PFTAIRE kinase L63 interactor 1A (Pif1A) gene. Quantitative real-time PCR showed that Pif1A transcript abundance was decreased in the mutant, and a transgene expressing Pif1A fused to green fluorescent protein (GFP) was able to fully rescue spermatid individualization and male fertility. Pif1A-GFP localized to the front of actin cones before initiation of movement. We propose that Pif1A plays a pivotal role in directing actin cone movement.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Actinas/genética , Actinas/metabolismo , Animais , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Masculino , Espermátides/metabolismo , Espermatogênese/genética , Testículo/metabolismo
3.
Biochem Soc Trans ; 49(3): 1397-1408, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34196366

RESUMO

The Eyes Absent (EYA) transactivator-phosphatase proteins are important contributors to cell-fate determination processes and to the development of multiple organs. The transcriptional regulatory activity as well as the protein tyrosine phosphatase activities of the EYA proteins can independently contribute to proliferation, differentiation, morphogenesis and tissue homeostasis in different contexts. Aberrant EYA levels or activity are associated with numerous syndromic and non-syndromic developmental disorders, as well as cancers. Commensurate with the multiplicity of biochemical activities carried out by the EYA proteins, they impact upon a range of cellular signaling pathways. Here, we provide a broad overview of the roles played by EYA proteins in development, and highlight the molecular signaling pathways known to be linked with EYA-associated organ development and developmental disorders.


Assuntos
Anormalidades Congênitas/genética , Olho/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Rim/metabolismo , Proteínas Tirosina Fosfatases/genética , Transativadores/genética , Animais , Anormalidades Congênitas/embriologia , Anormalidades Congênitas/metabolismo , Olho/embriologia , Olho/crescimento & desenvolvimento , Predisposição Genética para Doença/genética , Humanos , Rim/embriologia , Rim/crescimento & desenvolvimento , Mutação , Proteínas Tirosina Fosfatases/metabolismo , Transativadores/metabolismo
4.
Int J Mol Sci ; 22(8)2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33920226

RESUMO

Here, we review the haloacid dehalogenase (HAD) class of protein phosphatases, with a particular emphasis on an unusual group of enzymes, the eyes absent (EYA) family. EYA proteins have the unique distinction of being structurally and mechanistically classified as HAD enzymes, yet, unlike other HAD phosphatases, they are protein tyrosine phosphatases (PTPs). Further, the EYA proteins are unique among the 107 classical PTPs in the human genome because they do not use a Cysteine residue as a nucleophile in the dephosphorylation reaction. We will provide an overview of HAD phosphatase structure-function, describe unique features of the EYA family and their tyrosine phosphatase activity, provide a brief summary of the known substrates and cellular functions of the EYA proteins, and speculate about the evolutionary origins of the EYA family of proteins.


Assuntos
Evolução Molecular , Genoma Humano/genética , Hidrolases/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Nucleares/genética , Proteínas Tirosina Fosfatases/genética , Cisteína/metabolismo , Humanos , Hidrolases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Relação Estrutura-Atividade
5.
Mol Cancer Ther ; 20(5): 803-815, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33649104

RESUMO

EWSR1/FLI1, the most common fusion gene in Ewing sarcoma, upregulates expression of the Eyes Absent 3 (EYA3) transactivator-phosphatase protein. The purpose of this study was to investigate molecular and cellular mechanisms through which EYA3 might promote Ewing sarcoma tumor growth and to determine whether the EYA3 tyrosine phosphatase activity represents a viable therapeutic target. We used genetic and pharmacologic modulation of EYA3 in cell line-based xenografts to examine how loss of EYA3 tyrosine phosphatase activity affects tumor growth and angiogenesis. Molecular mechanisms were evaluated in vivo and in vitro through analyses of tumor tissue and multicellular tumor spheroids. Our results show that both loss of EYA3 in Ewing sarcoma cells and pharmacologic inhibition of the EYA3 tyrosine phosphatase activity inhibit tumor growth and tumor angiogenesis. EYA3 regulates levels of VEGFA in Ewing tumors, as well as promoting DNA damage repair and survival of Ewing sarcoma tumor cells. Target engagement is demonstrated in tumor tissue through elevated levels of the EYA3 substrate H2AX-pY142 upon loss of EYA3 or with Benzarone treatment. The efficacy of EYA3 tyrosine phosphatase inhibition in attenuating tumor growth and angiogenesis is corroborated in an Ewing sarcoma patient-derived tumor xenograft. Together, the results presented here validate EYA3 as a target for the development of novel Ewing sarcoma therapeutic strategies, and set the stage for evaluating the efficacy of combining the antiangiogenic and anti-cell survival effects of EYA3 inhibition with cytotoxic chemotherapy.


Assuntos
Dano ao DNA/genética , Proteínas de Ligação a DNA/metabolismo , Sarcoma de Ewing/terapia , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Neovascularização Patológica , Sarcoma de Ewing/patologia
6.
Crit Rev Biochem Mol Biol ; 55(4): 372-385, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32727223

RESUMO

The Eyes Absent (EYA) proteins are the only known instance of a single polypeptide housing the following three separable biochemical activities: tyrosine phosphatase, threonine phosphatase, and transactivation. This uniquely positions the EYAs to participate in both transcriptional regulation and signal transduction pathways. But it also complicates the assignment of biological roles to individual biochemical activities through standard loss-of-function experiments. Nevertheless, there is an emerging literature linking developmental and pathological functions with the various EYA activities, and a growing list of disease states that might benefit from EYA-targeted therapeutics. There also remain multiple unresolved issues with significant implications for our understanding of how the EYAs might impact such ubiquitous signaling cascades as the MYC and Notch pathways. This review will describe the unique juxtaposition of biochemical activities in the EYAs, their interaction with signaling pathways and cellular processes, emerging evidence of roles in disease states, and the feasibility of therapeutic targeting of individual EYA activities. We will focus on the phosphatase activities of the vertebrate EYA proteins and will examine the current state of knowledge regarding: • substrates and signaling pathways affected by the EYA tyrosine phosphatase activity; • modes of regulation of the EYA tyrosine phosphatase activity; • signaling pathways that implicate the threonine phosphatase activity of the EYAs including a potential interaction with PP2A-B55α; • the interplay between the two phosphatase activities and the transactivation function of the EYAs; • disease states associated with the EYAs and the current state of development of EYA-targeted therapeutics.


Assuntos
Fosfoproteínas Fosfatases/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Transdução de Sinais , Transativadores/metabolismo , Animais , Humanos , Fosfoproteínas Fosfatases/genética , Proteínas Tirosina Fosfatases/genética , Transativadores/genética
7.
Development ; 147(7)2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32122989

RESUMO

The Gsx2 homeodomain transcription factor promotes neural progenitor identity in the lateral ganglionic eminence (LGE), despite upregulating the neurogenic factor Ascl1. How this balance in maturation is maintained is unclear. Here, we show that Gsx2 and Ascl1 are co-expressed in subapical progenitors that have unique transcriptional signatures in LGE ventricular zone (VZ) cells. Moreover, whereas Ascl1 misexpression promotes neurogenesis in dorsal telencephalic progenitors, the co-expression of Gsx2 with Ascl1 inhibits neurogenesis. Using luciferase assays, we found that Gsx2 reduces the ability of Ascl1 to activate gene expression in a dose-dependent and DNA binding-independent manner. Furthermore, Gsx2 physically interacts with the basic helix-loop-helix (bHLH) domain of Ascl1, and DNA-binding assays demonstrated that this interaction interferes with the ability of Ascl1 to bind DNA. Finally, we modified a proximity ligation assay for tissue sections and found that Ascl1-Gsx2 interactions are enriched within LGE VZ progenitors, whereas Ascl1-Tcf3 (E-protein) interactions predominate in the subventricular zone. Thus, Gsx2 contributes to the balance between progenitor maintenance and neurogenesis by physically interacting with Ascl1, interfering with its DNA binding and limiting neurogenesis within LGE progenitors.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Encéfalo/embriologia , Proliferação de Células , Proteínas de Homeodomínio/metabolismo , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Encéfalo/metabolismo , Proliferação de Células/genética , Células Cultivadas , Drosophila , Embrião de Mamíferos , Feminino , Gânglios/citologia , Gânglios/embriologia , Proteínas de Homeodomínio/genética , Homeostase/genética , Masculino , Camundongos , Camundongos Transgênicos , Ligação Proteica , Telencéfalo/citologia , Telencéfalo/embriologia
8.
J Neurosci ; 38(42): 9105-9121, 2018 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-30143575

RESUMO

Specification of dorsoventral regional identity in progenitors of the developing telencephalon is a first pivotal step in the development of the cerebral cortex and basal ganglia. Previously, we demonstrated that the two zinc finger doublesex and mab-3 related (Dmrt) genes, Dmrt5 (Dmrta2) and Dmrt3, which are coexpressed in high caudomedial to low rostrolateral gradients in the cerebral cortical primordium, are separately needed for normal formation of the cortical hem, hippocampus, and caudomedial neocortex. We have now addressed the role of Dmrt3 and Dmrt5 in controlling dorsoventral division of the telencephalon in mice of either sex by comparing the phenotypes of single knock-out (KO) with double KO embryos and by misexpressing Dmrt5 in the ventral telencephalon. We find that DMRT3 and DMRT5 act as critical regulators of progenitor cell dorsoventral identity by repressing ventralizing regulators. Early ventral fate transcriptional regulators expressed in the dorsal lateral ganglionic eminence, such as Gsx2, are upregulated in the dorsal telencephalon of Dmrt3;Dmrt5 double KO embryos and downregulated when ventral telencephalic progenitors express ectopic Dmrt5 Conditional overexpression of Dmrt5 throughout the telencephalon produces gene expression and structural defects that are highly consistent with reduced GSX2 activity. Further, Emx2;Dmrt5 double KO embryos show a phenotype similar to Dmrt3;Dmrt5 double KO embryos, and both DMRT3, DMRT5 and the homeobox transcription factor EMX2 bind to a ventral telencephalon-specific enhancer in the Gsx2 locus. Together, our findings uncover cooperative functions of DMRT3, DMRT5, and EMX2 in dividing dorsal from ventral in the telencephalon.SIGNIFICANCE STATEMENT We identified the DMRT3 and DMRT5 zinc finger transcription factors as novel regulators of dorsoventral patterning in the telencephalon. Our data indicate that they have overlapping functions and compensate for one another. The double, but not the single, knock-out produces a dorsal telencephalon that is ventralized, and olfactory bulb tissue takes over most remaining cortex. Conversely, overexpressing Dmrt5 throughout the telencephalon causes expanded expression of dorsal gene determinants and smaller olfactory bulbs. Furthermore, we show that the homeobox transcription factor EMX2 that is coexpressed with DMRT3 and DMRT5 in cortical progenitors cooperates with them to maintain dorsoventral patterning in the telencephalon. Our study suggests that DMRT3/5 function with EMX2 in positioning the pallial-subpallial boundary by antagonizing the ventral homeobox transcription factor GSX2.


Assuntos
Proteínas de Homeodomínio/fisiologia , Células-Tronco Neurais/fisiologia , Neurônios/fisiologia , Telencéfalo/embriologia , Fatores de Transcrição/fisiologia , Animais , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Telencéfalo/metabolismo , Fatores de Transcrição/genética
9.
PLoS One ; 1: e40, 2006 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-17183669

RESUMO

BACKGROUND: Leishmaniasis defines a cluster of protozoal diseases with diverse clinical manifestations. The visceral form caused by Leishmania donovani is the most severe. So far, no vaccines exist for visceral leishmaniasis despite indications of naturally developing immunity, and sensitive immunodiagnostics are still at early stages of development. METHODOLOGY/PRINCIPLE FINDINGS: Establishing a proteome-serological methodology, we mapped the antigenicity of the parasites and the specificities of the immune responses in human leishmaniasis. Using 2-dimensional Western blot analyses with sera and parasites isolated from patients in India, we detected immune responses with widely divergent specificities for up to 330 different leishmanial antigens. 68 antigens were assigned to proteins in silver- and fluorochrome-stained gels. The antigenicity of these proteins did not correlate with the expression levels of the proteins. Although some antigens are shared among different parasite isolates, there are extensive differences and no immunodominant antigens, but indications of antigenic drift in the parasites. Six antigens were identified by mass spectrometry. CONCLUSIONS/SIGNIFICANCE: Proteomics-based dissection of the serospecificities of leishmaniasis patients provides a comprehensive inventory of the complexity and interindividual heterogeneity of the host-responses to and variations in the antigenicity of the Leishmania parasites. This information can be instrumental in the development of vaccines and new immune monitoring and diagnostic devices.


Assuntos
Antígenos de Protozoários , Leishmania donovani/imunologia , Leishmaniose Visceral/imunologia , Leishmaniose Visceral/parasitologia , Adolescente , Adulto , Sequência de Aminoácidos , Animais , Anticorpos Antiprotozoários/sangue , Especificidade de Anticorpos , Antígenos de Protozoários/genética , Antígenos de Protozoários/isolamento & purificação , Western Blotting , Criança , Eletroforese em Gel Bidimensional , Mapeamento de Epitopos , Feminino , Humanos , Índia , Leishmania donovani/genética , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Proteoma , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Adulto Jovem
11.
Infect Immun ; 73(12): 8334-44, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16299331

RESUMO

The protein kinase C (PKC) family regulates macrophage function involved in host defense against infection. In the case of Leishmania donovani infection, the impairment of PKC-mediated signaling is one of the crucial events for the establishment of parasite into the macrophages. Earlier reports established that C-C chemokines mediated protection against leishmaniasis via the generation of nitric oxide after 48 h. In this study, we investigated the role of MIP-1alpha and MCP-1 in the regulation of impaired PKC activity in the early hours (6 h) of infection. These chemokines restored Ca2+-dependent PKC activity and inhibited Ca2+-independent atypical PKC activity in L. donovani-infected macrophages under both in vivo and in vitro conditions. Pretreatment of macrophages with chemokines induced superoxide anion generation by activating NADPH oxidase components in infected cells. Chemokine administration in vitro induced the migration of infected macrophages and triggered the production of reactive oxygen species. In vivo treatment with chemokines significantly restricted the parasitic burden in livers as well as in spleens. Collectively, these results indicate a novel regulatory role of C-C chemokines in controlling the intracellular growth and multiplication of L. donovani, thereby demonstrating the antileishmanial properties of C-C chemokines in the disease process.


Assuntos
Quimiocinas CC/farmacologia , Leishmania donovani , Leishmaniose Visceral/imunologia , Macrófagos/enzimologia , Proteína Quinase C/metabolismo , Animais , Quimiocinas CC/metabolismo , Quimiotaxia , Leishmaniose Visceral/enzimologia , Macrófagos/efeitos dos fármacos , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Proteína Quinase C/genética , Proteína Quinase C beta , RNA Mensageiro/análise , RNA Mensageiro/metabolismo , Transdução de Sinais , Baço/citologia , Baço/enzimologia , Superóxidos/metabolismo
12.
Curr Mol Med ; 4(6): 691-6, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15357217

RESUMO

Chemokines are a growing group of chemoattractant cytokines that play important roles in physiological as well as pathological processes. Their roles in various aspects of pathogenesis and inflammation have come to light in the past decade or so. It is becoming increasingly clear that chemokines play a major, perhaps decisive role in Leishmania infections. In this review, we recapitulate important works linking the chemokine system with relation to visceral and cutaneous leishmaniasis over the past decade and attemptto put it all together to propose a single yet unfinished model to account for all the findings.


Assuntos
Quimiocinas/fisiologia , Leishmaniose/imunologia , Infecções Oportunistas Relacionadas com a AIDS/imunologia , Quimiocinas/metabolismo , Comorbidade , HIV-1/imunologia , Leishmaniose Cutânea/imunologia , Leishmaniose Cutânea/patologia , Leishmaniose Visceral/imunologia , Leishmaniose Visceral/patologia , Modelos Biológicos , Receptores de Quimiocinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...