Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 617(7960): 265-270, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37165240

RESUMO

Superposition, entanglement and non-locality constitute fundamental features of quantum physics. The fact that quantum physics does not follow the principle of local causality1-3 can be experimentally demonstrated in Bell tests4 performed on pairs of spatially separated, entangled quantum systems. Although Bell tests, which are widely regarded as a litmus test of quantum physics, have been explored using a broad range of quantum systems over the past 50 years, only relatively recently have experiments free of so-called loopholes5 succeeded. Such experiments have been performed with spins in nitrogen-vacancy centres6, optical photons7-9 and neutral atoms10. Here we demonstrate a loophole-free violation of Bell's inequality with superconducting circuits, which are a prime contender for realizing quantum computing technology11. To evaluate a Clauser-Horne-Shimony-Holt-type Bell inequality4, we deterministically entangle a pair of qubits12 and perform fast and high-fidelity measurements13 along randomly chosen bases on the qubits connected through a cryogenic link14 spanning a distance of 30 metres. Evaluating more than 1 million experimental trials, we find an average S value of 2.0747 ± 0.0033, violating Bell's inequality with a P value smaller than 10-108. Our work demonstrates that non-locality is a viable new resource in quantum information technology realized with superconducting circuits with potential applications in quantum communication, quantum computing and fundamental physics15.

2.
Phys Rev Lett ; 125(26): 260509, 2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33449723

RESUMO

We introduce a new approach to Gottesman-Kitaev-Preskill (GKP) states that treats their finite-energy version in an exact manner. Based on this analysis, we develop new qubit-oscillator circuits that autonomously stabilize a GKP manifold, correcting errors without relying on qubit measurements. Finally, we show numerically that logical information encoded in GKP states is very robust against typical oscillator noise sources when stabilized by these new circuits.

3.
Sci Adv ; 4(11): eaau1695, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30515454

RESUMO

Multiqubit parity measurements are essential to quantum error correction. Current realizations of these measurements often rely on ancilla qubits, a method that is sensitive to faulty two-qubit gates and that requires notable experimental overhead. We propose a hardware-efficient multiqubit parity measurement exploiting the bifurcation dynamics of a parametrically driven nonlinear oscillator. This approach takes advantage of the resonator's parametric oscillation threshold, which depends on the joint parity of dispersively coupled qubits, leading to high-amplitude oscillations for one parity subspace and no oscillation for the other. We present analytical and numerical results for two- and four-qubit parity measurements, with high-fidelity readout preserving the parity eigenpaces. Moreover, we discuss a possible realization that can be readily implemented with the current circuit quantum electrodynamics (QED) experimental toolbox. These results could lead to substantial simplifications in the experimental implementation of quantum error correction and notably of the surface code.

4.
Phys Rev Lett ; 120(20): 203602, 2018 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-29864351

RESUMO

The realization of a high-efficiency microwave single photon detector is a long-standing problem in the field of microwave quantum optics. Here, we propose a quantum nondemolition, high-efficiency photon detector that can readily be implemented in present state-of-the-art circuit quantum electrodynamics. This scheme works in a continuous fashion, gaining information about the photon arrival time as well as about its presence. The key insight that allows us to circumvent the usual limitations imposed by measurement backaction is the use of long-lived dark states in a small ensemble of inhomogeneous artificial atoms to increase the interaction time between the photon and the measurement device. Using realistic system parameters, we show that large detection fidelities are possible.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...