Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
ACS Chem Neurosci ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38989663

RESUMO

Status epilepticus (SE) is a medical emergency associated with high mortality and morbidity. Na+, K+-ATPase, is a promising therapeutic target for SE, given its critical role in regulation of neuron excitability and cellular homeostasis. We investigated the effects of a Na+, K+-ATPase-activating antibody (DRRSAb) on short-term electrophysiological and behavioral consequences of pilocarpine-induced SE. Rats were submitted to pilocarpine-induced SE, followed by intranasal administration (2 µg/nostril). The antibody increased EEG activity following SE, namely, EEG power in theta, beta, and gamma frequency bands, assessed by quantitative analysis of EEG power spectra. One week later, DRRSAb-treated animals displayed less behavioral hyperreactivity in pick-up tests and better performance in novel object recognition tests, indicating that the intranasal administration of this Na+, K+-ATPase activator immediately after SE improves behavioral outcomes at a later time point. These results suggest that Na+, K+-ATPase activation warrants further investigation as an adjunctive therapeutic strategy for SE.

2.
Life Sci ; : 122799, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38852798

RESUMO

Endurance exercise leads to robust increases in memory and learning. Several exercise adaptations occur to mediate these improvements, including in both the hippocampus and in peripheral organs. Organ crosstalk has been becoming increasingly more present in exercise biology, and studies have shown that peripheral organs can communicate to the hippocampus and mediate hippocampal changes. Both learning and memory as well as other hippocampal functional-related changes such as neurogenesis, cell proliferation, dendrite morphology and synaptic plasticity are controlled by these exercise responsive peripheral proteins. These peripheral factors, also called exerkines, are produced by several organs including skeletal muscle, liver, adipose tissue, kidneys, adrenal glands and circulatory cells. Previous reviews have explored some of these exerkines including muscle-derived irisin and cathepsin B (CTSB), but a full picture of peripheral to hippocampus crosstalk with novel exerkines such as selenoprotein 1 (SEPP1) and platelet factor 4 (PF4), or old overlooked ones such as lactate and insulin-like growth factor 1 (IGF-1) is still missing. We provide 29 different studies of 14 different exerkines that crosstalk with the hippocampus. Thus, the purpose of this review is to explore peripheral exerkines that have shown to exert hippocampal function following exercise, demonstrating their particular effects and molecular mechanisms in which they could be inducing adaptations.

3.
Nutr Res ; 122: 19-32, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38070463

RESUMO

Metabolic syndrome (MS) is a disorder that increasingly affects the world population, mainly because of changes in lifestyle and dietary habits. In this regard, both physical exercise and caffeine are low-cost and easily accessible therapies that separately have shown positive effects against metabolic disorders. Therefore, we hypothesized that physical exercise combined with caffeine could have a synergistic effect in the treatment of MS, risk factors, and cognitive deficits. Animals were divided into 8 groups and received fructose (15% w/v) or vehicle for 10 weeks. Swimming training and caffeine (6 mg/kg) started 4 weeks after fructose administration. Trained animals presented decreased body weight and visceral fat mass and increased soleus weight compared with untrained fructose-treated animals. Caffeine supplementation also prevented the gain of visceral fat mass induced by fructose. Furthermore, both treatments reversed fructose-induced decrease in glucose clearance over time and fructose-induced increase in 4-hydroxynonenal and nuclear factor-κB immunoreactivity. Physical training also improved the lipidic profile in fructose-treated animals (high-density lipoprotein, low-density lipoprotein, and triglycerides), improved short-term, long-term, and localization memory, and reversed the fructose-induced deficit in short-term memory. Physical training also increased nuclear factor erythroid 2-related factor 2 immunoreactivity per se. Considering that physical training and caffeine reversed some of the damages induced by fructose it is plausible to consider these treatments as alternative, nonpharmacological, and low-cost therapies to help reduce MS-associated risk factors; however, combined treatments did not show additive effects as hypothesized.


Assuntos
Síndrome Metabólica , Ratos , Animais , Síndrome Metabólica/prevenção & controle , Cafeína/farmacologia , NF-kappa B , Natação , Ratos Wistar , Suplementos Nutricionais , Cognição , Frutose/efeitos adversos
4.
Behav Brain Res ; 453: 114615, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37558167

RESUMO

Aspartame (ASP) is a common sweetener, but studies show it can harm the nervous system, causing learning and memory deficits. ß-caryophyllene (BCP), a natural compound found in foods, including bread, coffee, alcoholic beverages, and spices, has already described as a neuroprotector agent. Remarkably, ASP and BCP are commonly consumed, including in the same meal. Therefore, considering that (a) the BCP displays plenty of beneficial effects; (b) the ASP toxicity; and (c) that they can be consumed in the same meal, this study sought to investigate if the BCP would mitigate the memory impairment induced by ASP in rats and investigate the involvement of the brain-derived neurotrophic factor (BDNF)/ tropomyosin receptor kinase B (TrKB) signaling pathway and acetylcholinesterase (AChE) activity. Young male Wistar rats received ASP (75 mg/kg; i.g.) and/or BCP (100 mg/kg; i.p.) once daily, for 14 days. At the end of the treatment, the animals were evaluated in the open field and object recognition tests. The cerebral cortex and hippocampus samples were collected for biochemical and molecular analyses. Results showed that the BCP effectively protected against the cognitive damage caused by ASP in short and long-term memories. In addition, BCP mitigated the increase in AChE activity caused by ASP. Molecular insights revealed augmented BDNF and TrKB levels in the hippocampus of rats treated with BCP, indicating greater activation of this pathway. In conclusion, BCP protected against ASP-induced memory impairment. AChE activity and the BDNF/TrkB signaling pathway seem to be potential targets of BCP modulatory role in this study.


Assuntos
Acetilcolinesterase , Disfunção Cognitiva , Animais , Masculino , Ratos , Acetilcolinesterase/metabolismo , Aspartame/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Disfunção Cognitiva/metabolismo , Hipocampo/metabolismo , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/prevenção & controle , Ratos Wistar , Receptor trkB/metabolismo , Transdução de Sinais , Tropomiosina/metabolismo
5.
Mol Neurobiol ; 60(12): 6950-6974, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37518829

RESUMO

Physical exercise is well known as a non-pharmacological and holistic therapy believed to prevent and mitigate numerous neurological conditions and alleviate ageing-related cognitive decline. To do so, exercise affects the central nervous system (CNS) at different levels. It changes brain physiology and structure, promoting cognitive improvements, which ultimately improves quality of life. Most of these effects are mediated by neurotrophins release, enhanced adult hippocampal neurogenesis, attenuation of neuroinflammation, modulation of cerebral blood flow, and structural reorganisation, besides to promote social interaction with beneficial cognitive outcomes. In this review, we discuss, based on experimental and human research, how exercise impacts the brain structure and function and how these changes contribute to cognitive improvements. Understanding the mechanisms by which exercise affects the brain is essential to understand the brain plasticity following exercise, guiding therapeutic approaches to improve the quality of life, especially in obesity, ageing, neurodegenerative disorders, and following traumatic brain injury.


Assuntos
Encéfalo , Qualidade de Vida , Adulto , Humanos , Sistema Nervoso Central , Exercício Físico , Cognição
7.
Brain Sci ; 13(3)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36979196

RESUMO

Aflatoxin B1 (AFB1) is the most common toxic mycotoxin that contaminates food. The treatment of its intoxication and the management of contaminations are a constant subject of health agendas worldwide. However, such efforts are not always enough to avoid population intoxication. Our objective was to investigate whether intermittent exposure to AFB1 would cause any impairment in biochemical and behavioral parameters, intending to simulate an irregular consumption. Male Wistar rats received four AFB1 administrations (250 µg/kg) by intragastric route separated by a 96-h interval. Toxicity was evaluated using behavioral tests (open field, object recognition, nest construction, marble burying, and splash test), biochemical markers of oxidative stress (cerebral cortex, hippocampus, liver, and kidneys), and plasma parameters of hepatic and renal functions. The intermittent exposure caused no modification in body weight gain as well as in organ weight. Both control and AFB1 groups presented similar profiles of behavior to all tests performed. Furthermore, AFB1 administrations alter neither antioxidant defenses nor markers of oxidation in all assayed tissues and in the plasma markers of hepatic and renal functions. Therefore, AFB1 intermittent administration did not cause its common damage from exposure to this toxicant, which must be avoided, and additional studies are required.

8.
Brain Sci ; 13(2)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36831832

RESUMO

Epilepsy is characterized by a predisposition to generate recurrent and spontaneous seizures; it affects millions of people worldwide. Status epilepticus (SE) is a severe type of seizure. In this context, screening potential treatments is very important. In the present study, we evaluated the beneficial effects of rosmarinic acid (RA) in pilocarpine-induced in vitro and in vivo models of epileptiform activity. Using an in vitro model in combined entorhinal cortex-hippocampal from Wistar rats we evaluated the effects of RA (10 µg/mL) on the lactate release and a glucose fluorescent analogue, 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NDBG), after incubation in high potassium aCSF supplemented or not with pilocarpine. In the in vivo model, SE was induced in male C57BL/6 mice by pilocarpine. At 1, 24, and 48 h after the end of SE mice were treated with RA (30 mg/kg/v.o.). We evaluated the neuromotor impairment by neuroscore tests and protein carbonyl levels in the cerebral cortex. In both in vitro models, RA was able to decrease the stimulated lactate release, while no effect on 2-NBDG uptake was found. RA has beneficial effects in models of epileptiform activity in vivo and in vitro. We found that RA treatment attenuated SE-induced neuromotor impairment at the 48 h timepoint. Moreover, post-SE treatment with RA decreased levels of protein carbonyls in the cerebral cortex of mice when compared to their vehicle-treated counterparts. Importantly, RA was effective in a model of SE which is relevant for the human condition. The present data add to the literature on the biological effects of RA, which could be a good candidate for add-on therapy in epilepsy.

9.
J Food Sci ; 88(4): 1731-1742, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36789859

RESUMO

Several studies demonstrated the toxicity of aspartame (ASP) and aflatoxin B1 (AFB1 ) in preclinical models. Although the majority of these reports assessed the toxic effects of each substance separately, their concomitant exposure and hazardous consequences are scarce. Importantly, the deleterious effects at the central nervous system caused by ASP and AFB1 co-exposure are rarely addressed. We evaluated if concomitant exposure to AFB1 and ASP would cause behavioral impairment and alteration in oxidative status of the brain in male rats. Animals received once a day for 14 days AFB1 (250 µg/kg, intragastric gavage [i.g.]), ASP (75 mg/kg, i.g.), or both substances (association). On day 14, they were subjected to behavioral evaluation, and biochemical and molecular parameters of oxidative status were measured in the cerebral cortex and hippocampus. In the open field test, AFB1 and combination treatments modified the motor, exploratory, and grooming behavior. In the splash test, all treatments caused a reduction in grooming time compared to the control group. An increase in thiobarbituric acid-reactive substances content induced by AFB1 and combination treatments was observed. The antioxidant defenses (vitamin C, nonprotein sulfhydryl, and ferric reducing antioxidant power) were impaired in all groups compared to control. Regarding molecular evaluation, mitochondrial superoxide dismutase-2 immunoreactivity decreased after AFB1 or ASP exposition in the hippocampus. Thus, co-exposure to ASP and AFB1 was potentially more toxic because it aggravated behavioral impairments and oxidative status disbalance in comparison to the groups that received only ASP or AFB1 . Therefore, our data suggest that those substances caused a disruption in brain homeostasis.


Assuntos
Aflatoxina B1 , Antioxidantes , Ratos , Masculino , Animais , Antioxidantes/farmacologia , Aflatoxina B1/toxicidade , Aspartame/toxicidade , Ácido Ascórbico/farmacologia , Hipocampo/metabolismo , Estresse Oxidativo
10.
Gene ; 847: 146880, 2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36100117

RESUMO

The MnSOD Ala16Val single nucleotide polymorphism (SNP) has shown to be associated to risk factors of several metabolic and vascular diseases. However, little is known about interaction between MnSOD Ala16Val SNP in stroke, a frequent neurologic disease that involves clinic manifestations such as motor deficits and spasticity. In this sense, we decided to investigate the relationship between MnSOD Ala16Val SNP with spasticity in stroke and also its influence on interleukin levels, BDNF, and glycolipid parameters. Eighty post-stroke subjects and 80 healthy controls were investigated. We showed a higher spasticity, levels of total cholesterol, LDL, IL-1ß, IL-6, and INF-γ in VV post-stroke group. Interesting, we found a correlation between IL-1ß levels and spasticity in VV post-stroke. Triglycerides, glucose levels and caspases (1 and 3) activation were significantly higher, as well as BDNF levels were lower in VV and AV post-stroke. DNA damage was higher in post-stroke group. Thus, we can suggest that the V allele has a worse glycolipid profile, which would facilitate changes in neurovascular homeostasis. These events associated with an increase in inflammatory markers and a reduction in BDNF can contribute with the stroke and a worse clinical evolution in relation to spasticity in patients with VV genotype.


Assuntos
Interleucina-6 , Acidente Vascular Cerebral , Fator Neurotrófico Derivado do Encéfalo/genética , Caspases/genética , LDL-Colesterol/genética , Genótipo , Glucose , Glicolipídeos , Humanos , Interleucina-1beta/genética , Interleucina-6/genética , Espasticidade Muscular/genética , Polimorfismo de Nucleotídeo Único , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/genética , Superóxido Dismutase/genética , Triglicerídeos
11.
Antioxidants (Basel) ; 11(8)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-36009209

RESUMO

Salivary content has been reported as a potential biomarker for oxidative stress assessments especially in context of exercise-induced oxidative stress. This systematic review following PRISMA guidelines aimed to evaluate the effects of physical exercise and changes promoted in oxidative stress identified in saliva. METHODS: Studies published up to May 2022 were searched in online databases (PubMed, Scopus, Web of Science, The Cochrane Library, LILACS, OpenGrey, and Google Scholar). Risk of bias evaluation were performed using the Quality Assessment Tool for Before-After (Pre-Post) Studies with No Control Group. RESULTS: A total of 473 references were identified and 22 considered eligible. In this case 14 studies reported increase of antioxidant parameters in saliva while eight studies demonstrated increased lipid peroxidation after exercise. Regarding nitrite levels, two studies showed higher levels after exercise. The quality of evidence was very low due to high heterogeneity, inconsistency and indirectness among studies according Grading of Recommendations, Assessment, Development and Evaluation analysis. CONCLUSION: Increase of oxidative stress and antioxidant activity in saliva appears to be present after exercise, especially at moderate intensity. However, the wide variety of methods leads to divergent data. For precision in salivary assessments, new research with larger sample sizes and better participant matching are recommended.

12.
Brain Res ; 1784: 147883, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35300975

RESUMO

BACKGROUND: Status epilepticus (SE) is a neurological life-threatening condition, resulting from the failure of the mechanisms responsible for seizure termination. SE is often pharmacoresistant and associated with significant morbidity and mortality. Hence, ceasing or attenuating SE and its consequences is of fundamental importance. Beta-caryophyllene is a functional CB2 receptor agonist and exhibit a good safety profile. Besides, it displays beneficial effects in several experimental conditions, including neuroprotective activity. In the present study we aimed to investigate the effects of beta-caryophyllene on pilocarpine-induced SE. METHODS: Wistar rats were submitted to pilocarpine-induced SE and monitored for 24 h by video and EEG for short-term recurrence of seizure activity (i.e. seizures occurring within 24 h after termination of SE). Rats received beta-caryophyllene (100 mg/kg, ip) at 1, 8- and 16-hours after SE. Twenty-four hours after SE we evaluated sensorimotor response, neuronal damage (fluoro jade C staining) and serum albumin infiltration into brain parenchyma. RESULTS: Beta-caryophyllene-treated animals presented fewer short-term recurrent seizures than vehicle-treated counterparts, suggesting an anticonvulsant effect after SE. Behavioral recovery from SE and the number of fluoro jade C positive cells in the hippocampus and thalamus were not modified by beta-caryophyllene. Treatment with beta-caryophyllene attenuated the SE-induced increase of albumin immunoreactivity in the hippocampus, indicating a protective effect against blood-brain-barrier breakdown. CONCLUSIONS: Given the inherent difficulties in the treatment of SE and its consequences, present results suggest that beta-caryophyllene deserve further investigation as an adjuvant therapeutic strategy for SE.


Assuntos
Epilepsia Generalizada , Estado Epiléptico , Animais , Barreira Hematoencefálica/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Pilocarpina/toxicidade , Sesquiterpenos Policíclicos , Ratos , Ratos Wistar , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Convulsões/metabolismo , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/tratamento farmacológico
14.
Mol Neurobiol ; 59(2): 1124-1138, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34846694

RESUMO

Disruption of the blood-brain barrier and occurrence of coagulopathy after traumatic brain injury (TBI) have important implications for multiple secondary injury processes. Given the extent of post-traumatic changes in neuronal function, significant alterations in some targets, such thrombin (a protease that plays a physiological role in maintaining blood coagulation), play an important role in TBI-induced pathophysiology. Despite the magnitude of thrombin in synaptic plasticity being concentration-dependent, the mechanisms underlying TBI have not been fully elucidated. The understanding of this post-injury neurovascular dysregulation is essential to establish scientific-based rehabilitative strategies. One of these strategies may be supporting physical exercise, considering its relevance in reducing damage after a TBI. However, there are caveats to consider when interpreting the effect of physical exercise on neurovascular dysregulation after TBI. To complete this picture, this review will describe how the interactions established between blood-borne factors (such as thrombin) and physical exercise alter the TBI pathophysiology.


Assuntos
Lesões Encefálicas Traumáticas , Exercício Físico , Trombina , Barreira Hematoencefálica/patologia , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/terapia , Humanos , Plasticidade Neuronal , Trombina/metabolismo
15.
Drug Chem Toxicol ; 45(6): 2780-2785, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34709106

RESUMO

The potential interactions among food additives/contaminants and the consequences to biological systems is a topic that is rarely addressed in scientific literature. Thus, the current study investigated if the combined administration of ASP and AFB1 would impair hepatic and renal oxidative status. Male Wistar rats received during 14 days once a day ASP (75 mg/Kg) and/or AFB1 (250 µg/Kg) through intragastric route. At the end of experimental protocol, samples of liver and kidneys were collected for assessing biochemical markers of oxidative status. In the hepatic tissue, the treatment with a single substance (ASP or AFB1) caused an increase in TBARS levels, and a reduction in non-enzymatic antioxidant defenses (Vit C and NPSH levels and FRAP test). In the kidneys, TBARS levels were increased only in the group that received ASP + AFB1. The association reduced NPSH content, while the treatment with AFB1 reduced the FRAP levels. GST and CAT activities were increased in all treatments. Overall, ASP and AFB1 association presented higher toxic effects to the tissues. To the best of our knowledge, this is the first study demonstrating that the associated use of both ASP and AFB1 induces more extensive injuries in comparison to the effects caused by each one alone. Therefore, these data demonstrated that concomitant exposure to ASP and AFB1 potentiated their oxidative damage in hepatic tissue, suggesting that this organ is particularly sensitive to the toxic action induced by these substances.


Assuntos
Aflatoxina B1 , Antioxidantes , Ratos , Masculino , Animais , Aflatoxina B1/toxicidade , Antioxidantes/farmacologia , Aspartame/toxicidade , Aspartame/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Ratos Wistar , Estresse Oxidativo , Fígado , Biomarcadores/metabolismo , Aditivos Alimentares/metabolismo , Aditivos Alimentares/farmacologia
16.
Antioxidants (Basel) ; 10(8)2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34439494

RESUMO

Recovery in athletes is hampered by soreness and fatigue. Consequently, nonsteroidal anti-inflammatory drugs are used as an effective strategy to maintain high performance. However, impact of these drugs on adaptations induced by training remains unknown. This study assessed the effects of diclofenac administration (10 mg/kg/day) on rats subjected to an exhaustive test, after six weeks of swimming training. Over the course of 10 days, three repeated swimming bouts were performed, and diclofenac or saline were administered once a day. Trained animals exhibited higher muscle citrate synthase and lower plasma creatinine kinase activities as compared to sedentary animals, wherein diclofenac had no impact. Training increased time to exhaustion, however, diclofenac blunted this effect. It also impaired the increase in plasma and liver interleukin-6 levels. The trained group exhibited augmented catalase, glutathione peroxidase, and glutathione reductase activities, and a higher ratio of reduced-to-oxidized glutathione in the liver. However, diclofenac treatment blunted all these effects. Systems biology analysis revealed a close relationship between diclofenac and liver catalase. These results confirmed that regular exercise induces inflammation and oxidative stress, which are crucial for tissue adaptations. Altogether, diclofenac treatment might be helpful in preventing pain and inflammation, but its use severely affects performance and tissue adaptation.

17.
Mol Neurobiol ; 58(9): 4615-4627, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34148214

RESUMO

Traumatic brain injury (TBI) is considered a public health problem and is often related to motor and cognitive disabilities, besides behavioral and emotional changes that may remain for the rest of the subject's life. Resident astrocytes and microglia are the first cell types to start the inflammatory cascades following TBI. It is widely known that continuous or excessive neuroinflammation may trigger many neuropathologies. Despite the large numbers of TBI cases, there is no effective pharmacological treatment available. This study aimed to investigate the effects of the new hybrid molecule 3-ethoxycarbonyl-2-methyl-4-(2-nitrophenyl)-4,11-dihydro1H-pyrido[2,3-b][1,5]benzodiazepine (JM-20) on TBI outcomes. Male Wistar rats were submitted to a weight drop model of mild TBI and treated with a single dose of JM-20 (8 mg/kg). Twenty-four hours after TBI, JM-20-treated animals showed improvements on locomotor and exploratory activities, and short-term memory deficits induced by TBI improved as well. Brain edema was present in TBI animals and the JM-20 treatment was able to prevent this change. JM-20 was also able to attenuate neuroinflammation cascades by preventing glial cells-microglia and astrocytes-from exacerbated activation, consequently reducing pro-inflammatory cytokine levels (TNF-α and IL-1ß). BDNF mRNA level was decreased 24 h after TBI because of neuroinflammation cascades; however, JM-20 restored the levels. JM-20 also increased GDNF and NGF levels. These results support the JM-20 neuroprotective role to treat mild TBI by reducing the initial damage and limiting long-term secondary degeneration after TBI.


Assuntos
Benzodiazepinas/farmacologia , Concussão Encefálica/metabolismo , Cognição/efeitos dos fármacos , Fatores de Crescimento Neural/metabolismo , Neuroglia/efeitos dos fármacos , Niacina/análogos & derivados , Transdução de Sinais/efeitos dos fármacos , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Comportamento Animal/efeitos dos fármacos , Benzodiazepinas/uso terapêutico , Disfunção Cognitiva/tratamento farmacológico , Modelos Animais de Doenças , Masculino , Microglia/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Niacina/farmacologia , Niacina/uso terapêutico , Ratos , Ratos Wistar
18.
Epileptic Disord ; 23(1): 74-84, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33602662

RESUMO

We investigated the metabolic profile, reactive species production, and inflammatory parameters in patients with epilepsy. Furthermore, we investigated whether there is any relationship between these parameters and seizure type. Patients with epilepsy (n=43) and healthy subjects (control group; n=41) were recruited to participate in the study. Initially, the participants were submitted to a clinical questionnaire and patients with epilepsy were classified according to seizure type. Metabolic markers and inflammatory and oxidative factors were also measured in specific blood samples. We compared these results with data from the control subjects. Statistical analyses showed that patients with epilepsy presented with higher levels of glycolipid, oxidative stress, and inflammatory parameters compared to the control subjects. Interestingly, patients with generalized seizures presented with higher MnSOD activity and metabolic parameters (total cholesterol, low-density lipoprotein, glucose and triglyceride levels) compared to the partial seizure and control groups. Furthermore, patients with generalized epilepsy demonstrated a significant correlation between TNF-α and caspase 8 (p<0.05), caspase 3 (p<0.05), and Picogreen (p<0.001). This study supports evidence that the levels of inflammatory, glycolipid, and oxidative factors are higher in epilepsy patients, especially those with generalized epilepsy.


Assuntos
Epilepsia , Inflamação , Metaboloma , Adulto , Epilepsia/sangue , Epilepsia/imunologia , Epilepsia/fisiopatologia , Feminino , Humanos , Inflamação/sangue , Inflamação/imunologia , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
19.
Biochim Biophys Acta Mol Basis Dis ; 1867(4): 166078, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33444711

RESUMO

To shed light on the impact of systemic physiology on the pathology of traumatic brain injury (TBI), we examine the effects of TBI (concussive injury) and dietary fructose on critical aspects of lipid homeostasis in the brain and liver of young-adult rats. Lipids are integral components of brain structure and function, and the liver has a role on the synthesis and metabolism of lipids. Fructose is mainly metabolized in the liver with potential implications for brain function. Lipidomic analysis accompanied by unbiased sparse partial least squares discriminant analysis (sPLS-DA) identified lysophosphatidylcholine (LPC) and cholesterol ester (CE) as the top lipid families impacted by TBI and fructose in the hippocampus, and only LPC (16:0) was associated with hippocampal-dependent memory performance. Fructose and TBI elevated liver pro-inflammatory markers, interleukin-1α (IL-1α), Interferon-γ (IFN-γ) that correlated with hippocampal-dependent memory dysfunction, and monocyte chemoattractant protein-1 (MCP-1) positively correlated with LPC levels in the hippocampus. The effects of fructose were more pronounced in the liver, in agreement with the role of liver on fructose metabolism and suggest that fructose could exacerbate liver inflammation caused by TBI. The overall results indicate that TBI and fructose interact to influence systemic and central inflammation by engaging liver lipids. The impact of TBI and fructose diet on the periphery provides a therapeutic target to counteract the TBI pathogenesis.


Assuntos
Lesões Encefálicas Traumáticas/fisiopatologia , Encéfalo/fisiopatologia , Metabolismo dos Lipídeos , Fígado/fisiopatologia , Animais , Encéfalo/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Inflamação/metabolismo , Inflamação/fisiopatologia , Fígado/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley
20.
Biochim Biophys Acta Mol Basis Dis ; 1867(5): 166036, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33508421

RESUMO

High consumption of fructose has paralleled an explosion in metabolic disorders including obesity and type 2 diabetes. Even more problematic, sustained consumption of fructose is perceived as a threat for brain function and development of neurological disorders. The action of fructose on peripheral organs is an excellent model to understand how systemic physiology impacts the brain. Given the recognized action of fructose on liver metabolism, here we discuss mechanisms by which fructose can impact the brain by interacting with liver and other organs. The interaction between peripheral and central mechanisms is a suitable target to reduce the pathophysiological consequences of neurological disorders.


Assuntos
Encefalopatias/etiologia , Sacarose Alimentar/efeitos adversos , Frutose/efeitos adversos , Doenças Metabólicas/patologia , Plasticidade Neuronal , Encefalopatias/patologia , Humanos , Doenças Metabólicas/induzido quimicamente , Fenômenos Fisiológicos do Sistema Nervoso , Edulcorantes/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...