Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Neural Regen Res ; 20(1): 82-92, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38767478

RESUMO

Understanding the neural underpinning of human gait and balance is one of the most pertinent challenges for 21st-century translational neuroscience due to the profound impact that falls and mobility disturbances have on our aging population. Posture and gait control does not happen automatically, as previously believed, but rather requires continuous involvement of central nervous mechanisms. To effectively exert control over the body, the brain must integrate multiple streams of sensory information, including visual, vestibular, and somatosensory signals. The mechanisms which underpin the integration of these multisensory signals are the principal topic of the present work. Existing multisensory integration theories focus on how failure of cognitive processes thought to be involved in multisensory integration leads to falls in older adults. Insufficient emphasis, however, has been placed on specific contributions of individual sensory modalities to multisensory integration processes and cross-modal interactions that occur between the sensory modalities in relation to gait and balance. In the present work, we review the contributions of somatosensory, visual, and vestibular modalities, along with their multisensory intersections to gait and balance in older adults and patients with Parkinson's disease. We also review evidence of vestibular contributions to multisensory temporal binding windows, previously shown to be highly pertinent to fall risk in older adults. Lastly, we relate multisensory vestibular mechanisms to potential neural substrates, both at the level of neurobiology (concerning positron emission tomography imaging) and at the level of electrophysiology (concerning electroencephalography). We hope that this integrative review, drawing influence across multiple subdisciplines of neuroscience, paves the way for novel research directions and therapeutic neuromodulatory approaches, to improve the lives of older adults and patients with neurodegenerative diseases.

3.
Life (Basel) ; 14(3)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38541715

RESUMO

Phase-amplitude coupling (PAC) describes the interaction of two separate frequencies in which the lower frequency phase acts as a carrier frequency of the higher frequency amplitude. It is a means of carrying integrated streams of information between micro- and macroscale systems in the brain, allowing for coordinated activity of separate brain regions. A beta-gamma PAC increase over the sensorimotor cortex has been observed consistently in people with Parkinson's disease (PD). Its cause is attributed to neural entrainment in the basal ganglia, caused by pathological degeneration characteristic of PD. Disruptions in this phenomenon in PD patients have been observed in the resting state as well as during movement recordings and have reliably distinguished patients from healthy participants. The changes can be detected non-invasively with the electroencephalogram (EEG). They correspond to the severity of the motor symptoms and the medication status of people with PD. Furthermore, a medication-induced decrease in PAC in PD correlates with the alleviation of motor symptoms measured by assessment scales. A beta-gamma PAC increase has, therefore, been explored as a possible means of quantifying motor pathology in PD. The application of this parameter to closed-loop deep brain stimulation could serve as a self-adaptation measure of such treatment, responding to fluctuations of motor symptom severity in PD. Furthermore, phase-dependent stimulation provides a new precise method for modulating PAC increases in the cortex. This review offers a comprehensive synthesis of the current EEG-based evidence on PAC fluctuations in PD, explores the potential practical utility of this biomarker, and provides recommendations for future research.

4.
Brain ; 147(5): 1799-1808, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38109781

RESUMO

Most individuals with Parkinson's disease experience cognitive decline. Mounting evidence suggests this is partially caused by cholinergic denervation due to α-synuclein pathology in the cholinergic basal forebrain. Alpha-synuclein deposition causes inflammation, which can be measured with free water fraction, a diffusion MRI-derived metric of extracellular water. Prior studies have shown an association between basal forebrain integrity and cognition, cholinergic levels and cognition, and basal forebrain volume and acetylcholine, but no study has directly investigated whether basal forebrain physiology mediates the relationship between acetylcholine and cognition in Parkinson's disease. We investigated the relationship between these variables in a cross-sectional analysis of 101 individuals with Parkinson's disease. Cholinergic levels were measured using fluorine-18 fluoroethoxybenzovesamicol (18F-FEOBV) PET imaging. Cholinergic innervation regions of interest included the medial, lateral capsular and lateral perisylvian regions and the hippocampus. Brain volume and free water fraction were quantified using T1 and diffusion MRI, respectively. Cognitive measures included composites of attention/working memory, executive function, immediate memory and delayed memory. Data were entered into parallel mediation analyses with the cholinergic projection areas as predictors, cholinergic basal forebrain volume and free water fraction as mediators and each cognitive domain as outcomes. All mediation analyses controlled for age, years of education, levodopa equivalency dose and systolic blood pressure. The basal forebrain integrity metrics fully mediated the relationship between lateral capsular and lateral perisylvian acetylcholine and attention/working memory, and partially mediated the relationship between medial acetylcholine and attention/working memory. Basal forebrain integrity metrics fully mediated the relationship between medial, lateral capsular and lateral perisylvian acetylcholine and free water fraction. For all mediations in attention/working memory and executive function, the free water mediation was significant, while the volume mediation was not. The basal forebrain integrity metrics fully mediated the relationship between hippocampal acetylcholine and delayed memory and partially mediated the relationship between lateral capsular and lateral perisylvian acetylcholine and delayed memory. The volume mediation was significant for the hippocampal and lateral perisylvian models, while free water fraction was not. Free water fraction in the cholinergic basal forebrain mediated the relationship between acetylcholine and attention/working memory and executive function, while cholinergic basal forebrain volume mediated the relationship between acetylcholine in temporal regions in memory. These findings suggest that these two metrics reflect different stages of neurodegenerative processes and add additional evidence for a relationship between pathology in the basal forebrain, acetylcholine denervation and cognitive decline in Parkinson's disease.


Assuntos
Prosencéfalo Basal , Cognição , Doença de Parkinson , Humanos , Prosencéfalo Basal/patologia , Prosencéfalo Basal/diagnóstico por imagem , Prosencéfalo Basal/metabolismo , Masculino , Feminino , Idoso , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/patologia , Doença de Parkinson/metabolismo , Pessoa de Meia-Idade , Estudos Transversais , Cognição/fisiologia , Acetilcolina/metabolismo , Tomografia por Emissão de Pósitrons , Neurônios Colinérgicos/patologia , Testes Neuropsicológicos
5.
Front Neurosci ; 17: 1293847, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38099203

RESUMO

Positron Emission Tomography (PET) brain imaging is increasingly utilized in clinical and research settings due to its unique ability to study biological processes and subtle changes in living subjects. However, PET imaging is not without its limitations. Currently, bias introduced by partial volume effect (PVE) and poor signal-to-noise ratios of some radiotracers can hamper accurate quantification. Technological advancements like ultra-high-resolution scanners and improvements in radiochemistry are on the horizon to address these challenges. This will enable the study of smaller brain regions and may require more sophisticated methods (e.g., data-driven approaches like unsupervised clustering) for reference region selection and to improve quantification accuracy. This review delves into some of these critical aspects of PET molecular imaging and offers suggested strategies for improvement. This will be illustrated by showing examples for dopaminergic and cholinergic nerve terminal ligands.

6.
Brain Sci ; 13(12)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38137159

RESUMO

Flumazenil is an allosteric modulator of the γ-aminobutyric acid-A receptor (GABAAR) benzodiazepine binding site that could normalize neuronal signaling and improve motor impairments in Parkinson's disease (PD). Little is known about how regional GABAAR availability affects motor symptoms. We investigated the relationship between regional availability of GABAAR benzodiazepine binding sites and motor impairments in PD. Methods: A total of 11 Patients with PD (males; mean age 69.0 ± 4.6 years; Hoehn and Yahr stages 2-3) underwent [11C]flumazenil GABAAR benzodiazepine binding site and [11C]dihydrotetrabenazine vesicular monoamine transporter type-2 (VMAT2) PET imaging and clinical assessment. Stepwise regression analysis was used to predict regional cerebral correlates of the four cardinal UPDRS motor scores using cortical, striatal, thalamic, and cerebellar flumazenil binding estimates. Thalamic GABAAR availability was selectively associated with axial motor scores (R2 = 0.55, F = 11.0, ß = -6.4, p = 0.0009). Multi-ligand analysis demonstrated significant axial motor predictor effects by both thalamic GABAAR availability (R2 = 0.47, ß = -5.2, F = 7.2, p = 0.028) and striatal VMAT2 binding (R2 = 0.30, ß = -3.9, F = 9.1, p = 0.019; total model: R2 = 0.77, F = 11.9, p = 0.0056). Post hoc analysis demonstrated that thalamic [11C]methyl-4-piperidinyl propionate cholinesterase PET and K1 flow delivery findings were not significant confounders. Findings suggest that reduced thalamic GABAAR availability correlates with worsened axial motor impairments in PD, independent of nigrostriatal degeneration. These findings may augur novel non-dopaminergic approaches to treating axial motor impairments in PD.

7.
Nutrients ; 15(13)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37447394

RESUMO

There is growing interest in the investigation of ketogenic diets as a potential therapy for bipolar disorder. The overlapping pharmacotherapies utilized for both bipolar disorder and seizures suggest that a mechanistic overlap may exist between these conditions, with fasting and the ketogenic diet representing the most time-proven therapies for seizure control. Recently, preliminary evidence has begun to emerge supporting a potential role for ketogenic diets in treating bipolar disorder. Notably, some patients may struggle to initiate a strict diet in the midst of a mood episode or significant life stressors. The key question addressed by this pilot clinical trial protocol is if benefits can be achieved with a less restrictive diet, as this would allow such an intervention to be accessible for more patients. Recent development of so-called ketone esters, that once ingested is converted to natural ketone bodies, combined with low glycemic index dietary changes has the potential to mimic two foundational components of therapeutic ketosis: high levels of ketones and minimal spiking of glucose/insulin. This pilot clinical trial protocol thus aims to investigate the effect of a 'ketogenic-mimicking diet' (combining supplementation of ketone esters with a low glycemic index dietary intervention) on neural network stability, mood, and biomarker outcomes in the setting of bipolar disorder. Positive findings obtained via this pilot clinical trial protocol may support future target engagement studies of ketogenic-mimicking diets or related ketogenic interventions. A lack of positive findings, in contrast, may justify a focus on more strict dietary interventions for future research.


Assuntos
Transtorno Bipolar , Dieta Cetogênica , Convulsões , Humanos , Transtorno Bipolar/dietoterapia , Dieta , Dieta Cetogênica/métodos , Corpos Cetônicos , Cetonas , Convulsões/prevenção & controle , Projetos Piloto
8.
Aging Brain ; 3: 100071, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37408789

RESUMO

There are conflicting results regarding regional age-related changes in serotonin terminal density in human brain. Some imaging studies suggest age-related declines in serotoninergic terminals and perikarya. Other human imaging studies and post-mortem biochemical studies suggest stable brain regional serotoninergic terminal densities across the adult lifespan. In this cross-sectional study, we used [11C]3-amino-4-(2-dimethylaminomethylphenylsulfanyl)-benzonitrile positron emission tomography to quantify brain regional serotonin transporter density in 46 normal subjects, ranging from 25 to 84 years of age. Both voxel-based analyses, using sex as a covariate, and volume-of-interest-based analyses were performed. Both analyses revealed age-related declines in [11C]3-amino-4-(2-dimethylaminomethylphenylsulfanyl)-benzonitrile binding in numerous brain regions, including several neocortical regions, striatum, amygdala, thalamus, dorsal raphe, and other subcortical regions. Similar to some other neurotransmitter systems of subcortical origin, we found evidence of age-related declines in regional serotonin terminal density in both cortical and subcortical regions.

9.
Brain ; 146(8): 3243-3257, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37086478

RESUMO

Postural instability and freezing of gait are the most debilitating dopamine-refractory motor impairments in advanced stages of Parkinson's disease because of increased risk of falls and poorer quality of life. Recent findings suggest an inability to efficaciously utilize vestibular information during static posturography among people with Parkinson's disease who exhibit freezing of gait, with associated changes in cholinergic system integrity as assessed by vesicular acetylcholine transporter PET. There is a lack of adequate understanding of how postural control varies as a function of available sensory information in patients with Parkinson's disease with freezing of gait. The goal of this cross-sectional study was to examine cerebral cholinergic system changes that associate with inter-sensory postural control processing features as assessed by dynamic computerized posturography and acetylcholinesterase PET. Seventy-five participants with Parkinson's disease, 16 of whom exhibited freezing of gait, underwent computerized posturography on the NeuroCom© Equitest sensory organization test platform, striatal dopamine, and acetylcholinesterase PET scanning. Findings demonstrated that patients with Parkinson's disease with freezing of gait have greater difficulty maintaining balance in the absence of reliable proprioceptive cues as compared to those without freezing of gait [ß = 0.28 (0.021, 0.54), P = 0.034], an effect that was independent of disease severity [ß = 0.16 (0.062, 0.26), P < 0.01] and age [ß = 0.092 (-0.005, 0.19), P = 0.062]. Exploratory voxel-based analysis revealed an association between postural control and right hemispheric cholinergic network related to visual-vestibular integration and self-motion perception. High anti-cholinergic burden predicted postural control impairment in a manner dependent on right hemispheric cortical cholinergic integrity [ß = 0.34 (0.065, 0.61), P < 0.01]. Our findings advance the perspective that cortical cholinergic system might play a role in supporting postural control after nigro-striatal dopaminergic losses in Parkinson's disease. Failure of cortex-dependent visual-vestibular integration may impair detection of postural instability in absence of reliable proprioceptive cues. Better understanding of how the cholinergic system plays a role in this process may augur novel treatments and therapeutic interventions to ameliorate debilitating symptoms in patients with advanced Parkinson's disease.


Assuntos
Transtornos Neurológicos da Marcha , Doença de Parkinson , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/tratamento farmacológico , Acetilcolinesterase , Dopamina , Estudos Transversais , Qualidade de Vida , Equilíbrio Postural
10.
Parkinsonism Relat Disord ; 107: 105251, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36566525

RESUMO

BACKGROUND: Postural instability and gait difficulties (PIGD) are a significant cause of disability and loss of quality of life (QoL) in Parkinson's Disease. Most research on clinical predictors of PIGD measures have focused on individual clinical often motor performance variables, However, PIGD motor features often result in fear of falling (FoF) lowering a patient's mobility self-efficacy. The purpose of this study was to assess composite measures of motor and self-efficacy determinants PIGD motor features in PD and compare these to analysis of individual clinical metrics. METHODS: 75 PD participants underwent detailed motor and non-motor test batteries. Principal component analysis (PCA) was used to identify clusters of covarying correlates of slow walking, imbalance, falls, freezing of gait, FoG and compare these to traditional univariate analyses. RESULTS: A single PCA-derived composite measure of motor performance and self-efficacy of mobility was the most robust determinant of all PIGD motor features except for falls. In contrast, analysis of the individual clinical variables showed more limited and diverging findings, including evidence of better cognitive performance but more severe motor parkinsonian ratings in the fall group. CONCLUSION: There are robust associations between composite measures of motor performance and self-efficacy of mobility and all PIGD motor features except for falls. Univariate analysis of individual clinical measures showed limited correlates of PIGD motor features. Patient's own perception of motor performance, FoF, and QoL deserve more attention as PIGD therapeutic targets in PD.


Assuntos
Transtornos Neurológicos da Marcha , Doença de Parkinson , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/psicologia , Qualidade de Vida , Transtornos Neurológicos da Marcha/etiologia , Autoeficácia , Medo/psicologia , Marcha , Equilíbrio Postural
11.
Brain Commun ; 4(6): fcac320, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36569603

RESUMO

Cortical cholinergic deficits contribute to cognitive decline and other deficits in Parkinson's disease. Cross-sectional imaging studies suggest a stereotyped pattern of posterior-to-anterior cortical cholinergic denervation accompanying disease progression in Parkinson's disease. We used serial acetylcholinesterase PET ligand imaging to characterize the trajectory of regional cholinergic synapse deficits in Parkinson's disease, testing the hypothesis of posterior-to-anterior progression of cortical cholinergic deficits. The 16 Parkinson's disease subjects (4 females/12 males; mean age: 64.4 ± 6.7 years; disease duration: 5.5 ± 4.2 years; Hoehn & Yahr stage: 2.3 ± 0.6 at entry) completed serial 11C-methyl-4-piperidinyl propionate acetylcholinesterase PET scans over a 4-8 year period (median 5 years). Three-dimensional stereotactic cortical surface projections and volume-of-interest analyses were performed. Cholinergic synapse integrity was assessed by the magnitude, k 3, of acetylcholinesterase hydrolysis of 11C-methyl-4-piperidinyl propionate. Based on normative data, we generated Z-score maps for both the k 3 and the k 1 parameters, the latter as a proxy for regional cerebral blood flow. Compared with control subjects, baseline scans showed predominantly posterior cortical k 3 deficits in Parkinson's disease subjects. Interval change analyses showed evidence of posterior-to-anterior progression of cholinergic cortical deficits in the posterior cortices. In frontal cortices, an opposite gradient of anterior-to-posterior progression of cholinergic deficits was found. The topography of k 3 changes exhibited regionally specific disconnection from k 1 changes. Interval-change analysis based on k 3/k 1 ratio images (k 3 adjustment for regional cerebral blood flow changes) showed interval reductions (up to 20%) in ventral frontal, anterior cingulate and Brodmann area 6 cortices. In contrast, interval k 3 reductions in the posterior cortices, especially Brodmann areas 17-19, were largely proportional to k 1 changes. Our results partially support the hypothesis of progressive posterior-to-cortical cholinergic denervation in Parkinson's disease. This pattern appears characteristic of posterior cortices. In frontal cortices, an opposite pattern of anterior-to-posterior progression of cholinergic deficits was found. The progressive decline of posterior cortical acetylcholinesterase activity was largely proportional to declining regional cerebral blood flow, suggesting that posterior cortical cholinergic synapse deficits are part of a generalized loss of synapses. The disproportionate decline in regional frontal cortical acetylcholinesterase activity relative to regional cerebral blood flow suggests preferential loss or dysregulation of cholinergic synapses in these regions. Our observations suggest that cortical cholinergic synapse vulnerability in Parkinson's disease is mediated by both diffuse processes affecting cortical synapses and processes specific to subpopulations of cortical cholinergic afferents.

12.
JMIR Infodemiology ; 2(2): e40198, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36575712

RESUMO

Background: Public health agencies widely adopt social media for health and risk communication. Moreover, different platforms have different affordances, which may impact the quality and nature of the messaging and how the public engages with the content. However, these platform effects are not often compared in studies of health and risk communication and not previously for the COVID-19 pandemic. Objective: This study measures the potential media effects of Twitter and Facebook on public health message design and engagement by comparing message elements and audience engagement in COVID-19-related posts by local, state, and federal public health agencies in the United States during the pandemic, to advance theories of public health messaging on social media and provide recommendations for tailored social media communication strategies. Methods: We retrieved all COVID-19-related posts from major US federal agencies related to health and infectious disease, all major state public health agencies, and selected local public health departments on Twitter and Facebook. A total of 100,785 posts related to COVID-19, from 179 different accounts of 96 agencies, were retrieved for the entire year of 2020. We adopted a framework of social media message elements to analyze the posts across Facebook and Twitter. For manual content analysis, we subsampled 1677 posts. We calculated the prevalence of various message elements across the platforms and assessed the statistical significance of differences. We also calculated and assessed the association between message elements with normalized measures of shares and likes for both Facebook and Twitter. Results: Distributions of message elements were largely similar across both sites. However, political figures (P<.001), experts (P=.01), and nonpolitical personalities (P=.01) were significantly more present on Facebook posts compared to Twitter. Infographics (P<.001), surveillance information (P<.001), and certain multimedia elements (eg, hyperlinks, P<.001) were more prevalent on Twitter. In general, Facebook posts received more (normalized) likes (0.19%) and (normalized) shares (0.22%) compared to Twitter likes (0.08%) and shares (0.05%). Elements with greater engagement on Facebook included expressives and collectives, whereas posts related to policy were more engaged with on Twitter. Science information (eg, scientific explanations) comprised 8.5% (73/851) of Facebook and 9.4% (78/826) of Twitter posts. Correctives of misinformation only appeared in 1.2% (11/851) of Facebook and 1.4% (12/826) of Twitter posts. Conclusions: In general, we find a data and policy orientation for Twitter messages and users and a local and personal orientation for Facebook, although also many similarities across platforms. Message elements that impact engagement are similar across platforms but with some notable distinctions. This study provides novel evidence for differences in COVID-19 public health messaging across social media sites, advancing knowledge of public health communication on social media and recommendations for health and risk communication strategies on these online platforms.

13.
Mov Disord ; 37(11): 2257-2262, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36373942

RESUMO

BACKGROUND: The vestibular system has been implicated in the pathophysiology of episodic motor impairments in Parkinson's disease (PD), but specific evidence remains lacking. OBJECTIVE: We investigated the relationship between the presence of freezing of gait and falls and postural failure during the performance on Romberg test condition 4 in patients with PD. METHODS: Modified Romberg sensory conflict test, fall, and freezing-of-gait assessments were performed in 92 patients with PD (70 males/22 females; mean age, 67.6 ± 7.4 years; Hoehn and Yahr stage, 2.4 ± 0.6; mean Montreal Cognitive Assessment, 26.4 ± 2.8). RESULTS: Failure during Romberg condition 4 was present in 33 patients (35.9%). Patients who failed the Romberg condition 4 were older and had more severe motor and cognitive impairments than those without. About 84.6% of all patients with freezing of gait had failure during Romberg condition 4, whereas 13.4% of patients with freezing of gait had normal performance (χ2  = 15.6; P < 0.0001). Multiple logistic regression analysis showed that the regressor effect of Romberg condition 4 test failure for the presence of freezing of gait (Wald χ2  = 5.0; P = 0.026) remained significant after accounting for the degree of severity of parkinsonian motor ratings (Wald χ2  = 6.2; P = 0.013), age (Wald χ2  = 0.3; P = 0.59), and cognition (Wald χ2  = 0.3; P = 0.75; total model: Wald χ2  = 16.1; P < 0.0001). Patients with PD who failed the Romberg condition 4 (45.5%) did not have a statistically significant difference in frequency of patients with falls compared with patients with PD without abnormal performance (30.5%; χ2  = 2.1; P = 0.15). CONCLUSIONS: The presence of deficient vestibular processing may have specific pathophysiological relevance for freezing of gait, but not falls, in PD. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Transtornos Neurológicos da Marcha , Doença de Parkinson , Masculino , Feminino , Humanos , Pessoa de Meia-Idade , Idoso , Doença de Parkinson/complicações , Transtornos Neurológicos da Marcha/etiologia , Equilíbrio Postural/fisiologia , Marcha , Exame Neurológico
14.
J Neural Transm (Vienna) ; 129(12): 1469-1479, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36222971

RESUMO

Prior studies indicate more severe brainstem cholinergic deficits in Progressive Supranuclear Palsy (PSP) compared to Parkinson's disease (PD), but the extent and topography of subcortical deficits remains poorly understood. The objective of this study is to investigate differential cholinergic systems changes in progressive supranuclear palsy (PSP, n = 8) versus Parkinson's disease (PD, n = 107) and older controls (n = 19) using vesicular acetylcholine transporter [18F]-fluoroethoxybenzovesamicol (FEOBV) positron emission tomography (PET). A whole-brain voxel-based PET analysis using Statistical Parametric Mapping (SPM) software (SPM12) for inter-group comparisons using parametric [18F]-FEOBV DVR images. Voxel-based analyses showed lower FEOBV binding in the tectum, metathalamus, epithalamus, pulvinar, bilateral frontal opercula, anterior insulae, superior temporal pole, anterior cingulum, some striatal subregions, lower brainstem, and cerebellum in PSP versus PD (p < 0.05; false discovery rate-corrected). More severe and diffuse reductions were present in PSP vs controls. Higher frequency of midbrain cholinergic losses was seen in PSP compared to the PD participants using 5th percentile normative cut-off values (χ2 = 4.12, p < 0.05). When compared to PD, these findings suggested disease-specific cholinergic vulnerability in the tectum, striatal cholinergic interneurons, and projections from the pedunculopontine nucleus, medial vestibular nucleus, and the cholinergic forebrain in PSP.


Assuntos
Doença de Parkinson , Núcleo Tegmental Pedunculopontino , Paralisia Supranuclear Progressiva , Humanos , Paralisia Supranuclear Progressiva/diagnóstico por imagem , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Núcleo Tegmental Pedunculopontino/metabolismo , Colinérgicos
15.
J Neurol Sci ; 440: 120357, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35932698

RESUMO

BACKGROUND AND PURPOSE: Abnormal balance is poorly responsive to dopaminergic therapy in Parkinson's disease (PD). Decreased vestibular efficacy may contribute to imbalance in PD. The purpose of this study was to investigate the relationship between vestibular measures of dynamic posturography and imbalance in PD while accounting for confounder variables. METHODS: 106 patients with PD underwent dynamic posturography for the 6 conditions of the sensory integration test (SOT) using the Neurocom Equitest device. All SOT measures, nigrostriatal dopaminergic denervation ((+)-[11C]DTBZ PET), brain acetylcholinesterase ([11C]PMP PET), age, duration of disease, cognitive and parkinsonian motor scores, and ankle vibration sensitivity were used as regressors in a stepwise logistic regression model comparing PD patients with versus without imbalance defined as Hoehn and Yahr (HY) stage 2.5 or higher. RESULTS: The presence of imbalance was significantly associated with vestibular ratio COP RMS (P = 0.002) independently from visual ratio COP velocity (P = 0.012), thalamic acetylcholinesterase activity (P = 0.0032), cognition (P = 0.006), motor severity (P = 0.0039), age (P = 0.001), ankle vibration sensitivity (P = 0.0008), and borderline findings for somatosensory ratio COP velocity (P = 0.074) and visual ratio COP RMS (P = 0.078). Nigrostriatal dopaminergic denervation did not achieve significance. CONCLUSIONS: The inability to efficaciously utilize vestibular information to retain upright stance is a determinant of imbalance in PD independent from visual and somatosensory processing changes and nigrostriatal dopaminergic losses. Thalamic, but not cortical, cholinergic denervation incrementally predicted balance abnormality. Further research is needed to investigate an intrinsic role of the cholinergic thalamus in multi-sensory, in particular vestibular, processing functions of postural control in PD.


Assuntos
Doença de Parkinson , Acetilcolinesterase/metabolismo , Colinérgicos , Dopamina , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico por imagem , Equilíbrio Postural , Tálamo
16.
J Neural Transm (Vienna) ; 129(8): 1001-1009, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35753016

RESUMO

To examine regional cerebral vesicular acetylcholine transporter (VAChT) ligand [18F]fluoroethoxybenzovesamicol ([18F]-FEOBV) PET binding in Parkinson' disease (PD) patients with and without vestibular sensory conflict deficits (VSCD). To examine associations between VSCD-associated cholinergic brain deficits and postural instability and gait difficulties (PIGD). PD persons (M70/F22; mean age 67.6 ± 7.4 years) completed clinical assessments for imbalance, falls, freezing of gait (FoG), modified Romberg sensory conflict testing, and underwent VAChT PET. Volumes of interest (VOI)-based analyses included detailed thalamic and cerebellar parcellations. VSCD-associated VAChT VOI selection used stepwise logistic regression analysis. Vesicular monoamine transporter type 2 (VMAT2) [11C]dihydrotetrabenazine (DTBZ) PET imaging was available in 54 patients. Analyses of covariance were performed to compare VSCD-associated cholinergic deficits between patients with and without PIGD motor features while accounting for confounders. PET sampling passed acceptance criteria in 73 patients. This data-driven analysis identified cholinergic deficits in five brain VOIs associating with the presence of VSCD: medial geniculate nucleus (MGN) (P < 0.0001), para-hippocampal gyrus (P = 0.0043), inferior nucleus of the pulvinar (P = 0.047), fusiform gyrus (P = 0.035) and the amygdala (P = 0.019). Composite VSCD-associated [18F]FEOBV-binding deficits in these 5 regions were significantly lower in patients with imbalance (- 8.3%, F = 6.5, P = 0.015; total model: F = 5.1, P = 0.0008), falls (- 6.9%, F = 4.9, P = 0.03; total model F = 4.7, P = 0.0015), and FoG (- 14.2%, F = 9.0, P = 0.0043; total model F = 5.8, P = 0.0003), independent of age, duration of disease, gender and nigrostriatal dopaminergic losses. Post hoc analysis using MGN VAChT binding as the single cholinergic VOI demonstrated similar significant associations with imbalance, falls and FoG. VSCD-associated cholinergic network changes localize to distinct structures involved in multi-sensory, in particular vestibular, and multimodal cognitive and motor integration brain regions. Relative clinical effects of VSCD-associated cholinergic network deficits were largest for FoG followed by postural imbalance and falls. The MGN was the most significant region identified.


Assuntos
Transtornos Neurológicos da Marcha , Doença de Parkinson , Idoso , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Colinérgicos , Feminino , Marcha , Transtornos Neurológicos da Marcha/diagnóstico por imagem , Transtornos Neurológicos da Marcha/etiologia , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/metabolismo , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo
17.
Mol Pharm ; 19(4): 1176-1182, 2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35289620

RESUMO

The [18F]fluoroethoxybenzovesamicol ([18F]FEOBV) positron emission tomography (PET) ligand targets the vesicular acetylcholine transporter. Recent [18F]FEOBV PET rodent studies suggest that regional brain [18F]FEOBV binding may be modulated by dopamine D2-like receptor agents. We examined associations of regional brain [18F]FEOBV PET binding in Parkinson's disease (PD) subjects without versus with dopamine D2-like receptor agonist drug treatment. PD subjects (n = 108; 84 males, 24 females; mean age 68.0 ± 7.6 [SD] years), mean disease duration of 6.0 ± 4.0 years, and mean Movement Disorder Society-revised Unified PD Rating Scale III 35.5 ± 14.2 completed [18F]FEOBV brain PET imaging. Thirty-eight subjects were taking dopamine D2-like agonists. Vesicular monoamine transporter type 2 [11C]dihydrotetrabenazine (DTBZ) PET was available in a subset of 54 patients. Subjects on dopamine D2-like agonists were younger, had a longer duration of disease, and were taking a higher levodopa equivalent dose (LED) compared to subjects not taking dopamine agonists. A group comparison between subjects with versus without dopamine D2-like agonist use did not yield significant differences in cortical, striatal, thalamic, or cerebellar gray matter [18F]FEOBV binding. Confounder analysis using age, duration of disease, LED, and striatal [11C]DTBZ binding also failed to show significant regional [18F]FEOBV binding differences between these two groups. Chronic D2-like dopamine agonist use in PD subjects is not associated with significant alterations of regional brain [18F]FEOBV binding.


Assuntos
Agonistas de Dopamina , Doença de Parkinson , Idoso , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Agonistas de Dopamina/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo
18.
Sci Rep ; 11(1): 905, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441596

RESUMO

Human voice pitch is highly sexually dimorphic and eminently quantifiable, making it an ideal phenotype for studying the influence of sexual selection. In both traditional and industrial populations, lower pitch in men predicts mating success, reproductive success, and social status and shapes social perceptions, especially those related to physical formidability. Due to practical and ethical constraints however, scant evidence tests the central question of whether male voice pitch and other acoustic measures indicate actual fighting ability in humans. To address this, we examined pitch, pitch variability, and formant position of 475 mixed martial arts (MMA) fighters from an elite fighting league, with each fighter's acoustic measures assessed from multiple voice recordings extracted from audio or video interviews available online (YouTube, Google Video, podcasts), totaling 1312 voice recording samples. In four regression models each predicting a separate measure of fighting ability (win percentages, number of fights, Elo ratings, and retirement status), no acoustic measure significantly predicted fighting ability above and beyond covariates. However, after fight statistics, fight history, height, weight, and age were used to extract underlying dimensions of fighting ability via factor analysis, pitch and formant position negatively predicted "Fighting Experience" and "Size" factor scores in a multivariate regression model, explaining 3-8% of the variance. Our findings suggest that lower male pitch and formants may be valid cues of some components of fighting ability in men.


Assuntos
Agressão/fisiologia , Voz/fisiologia , Acústica , Adulto , Agressão/psicologia , Antropometria , Atletas/psicologia , Biomarcadores , Sinais (Psicologia) , Humanos , Masculino , Artes Marciais/fisiologia , Fenótipo , Discriminação da Altura Tonal/fisiologia , Comportamento Sexual/fisiologia , Comportamento Sexual/psicologia , Percepção Social/psicologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...