Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(23): 10259-10269, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35649281

RESUMO

The metal-insulator transition driven by electronic correlations is one of the most fundamental concepts in condensed matter. In mixed-valence compounds, this transition is often accompanied by charge ordering (CO), resulting in the emergence of complex phases and unusual behaviors. The famous example is the archetypal mixed-valence mineral magnetite, Fe3O4, exhibiting a complex charge-ordering below the Verwey transition, whose nature has been a subject of long-time debates. In our study, using high-resolution X-ray diffraction supplemented by resistance measurements and DFT+DMFT calculations, the electronic, magnetic, and structural properties of recently synthesized mixed-valence Fe4O5 are investigated under pressure to ∼100 GPa. Our calculations, consistent with experiment, reveal that at ambient conditions Fe4O5 is a narrow-gap insulator characterized by the original Verwey-type CO. Under pressure Fe4O5 undergoes a series of electronic and magnetic-state transitions with an unusual compressional behavior above ∼50 GPa. A site-dependent collapse of local magnetic moments is followed by the site-selective insulator-to-metal transition at ∼84 GPa, occurring at the octahedral Fe sites. This phase transition is accompanied by a 2+ to 3+ valence change of the prismatic Fe ions and collapse of CO. We provide a microscopic explanation of the complex charge ordering in Fe4O5 which "unifies" it with the behavior of two archetypal examples of charge- or bond-ordered materials, magnetite and rare-earth nickelates (RNiO3). We find that at low temperatures the Verwey-type CO competes with the "trimeron"/"dimeron" charge ordered states, allowing for pressure/temperature tuning of charge ordering. Summing up the available data, we present the pressure-temperature phase diagram of Fe4O5.

2.
Sci Rep ; 12(1): 9647, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35689001

RESUMO

The pressure-induced Mott insulator-to-metal transitions are often accompanied by a collapse of magnetic interactions associated with delocalization of 3d electrons and high-spin to low-spin (HS-LS) state transition. Here, we address a long-standing controversy regarding the high-pressure behavior of an archetypal Mott insulator FeBO3 and show the insufficiency of a standard theoretical approach assuming a conventional HS-LS transition for the description of the electronic properties of the Mott insulators at high pressures. Using high-resolution x-ray diffraction measurements supplemented by Mössbauer spectroscopy up to pressures ~ 150 GPa, we document an unusual electronic state characterized by a "mixed" HS/LS state with a stable abundance ratio realized in the [Formula: see text] crystal structure with a single Fe site within a wide pressure range of ~ 50-106 GPa. Our results imply an unconventional cooperative (and probably dynamical) nature of the ordering of the HS/LS Fe sites randomly distributed over the lattice, resulting in frustration of magnetic moments.

3.
J Phys Condens Matter ; 34(13)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34991085

RESUMO

Experiments investigating magnetic-field-tuned superconductor-insulator transition (HSIT) mostly focus on two-dimensional material systems where the transition and its proximate ground-state phases, often exhibit features that are seemingly at odds with the expected behavior. Here we present a complementary study of a three-dimensional pressure-packed amorphous indium-oxide (InOx) powder where granularity controls the HSIT. Above a low threshold pressure of ∼0.2 GPa, vestiges of superconductivity are detected, although neither a true superconducting transition nor insulating behavior are observed. Instead, a saturation at very high resistivity at low pressure is followed by saturation at very low resistivity at higher pressure. We identify both as different manifestations of anomalous metallic phases dominated by superconducting fluctuations. By analogy with previous identification of the low resistance saturation as a 'failed superconductor', our data suggests that the very high resistance saturation is a manifestation of a 'failed insulator'. Above a threshold pressure of ∼6 GPa, the sample becomes fully packed, and superconductivity is robust, withTCtunable with pressure. A quantum critical point atPC∼ 25 GPa marks the complete suppression of superconductivity. For a finite pressure belowPC, a magnetic field is shown to induce a HSIT from a true zero-resistance superconducting state to a weakly insulating behavior. Determining the critical field,HC, we show that similar to the 2D behavior, the insulating-like state maintains a superconducting character, which is quenched at higher field, above which the magnetoresistance decreases to its fermionic normal state value.

4.
Phys Rev Lett ; 111(17): 175501, 2013 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-24206502

RESUMO

Under high pressures the hydrogen bonds were predicted to transform from a highly asymmetric soft O-H···O to a symmetric rigid configuration in which the proton lies midway between the two oxygen atoms. Despite four decades of research on hydroxyl containing compounds, pressure induced hydrogen bond symmetrization remains elusive. Following single crystal x-ray diffraction, Mössbauer and Raman spectroscopy measurements supported by ab initio calculations, we report the H-bonds symmetrization in iron oxyhydroxide, FeOOH, resulting from the Fe(3+) high-to-low spin crossover at above 45 GPa.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...