Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microvasc Res ; 142: 104360, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35301025

RESUMO

Shear stress is recognized as a regulator of angiogenesis. However, the shear stress experienced by the endothelial cells of capillary sprouts remains unknown. The objective of this study was to estimate shear stress due to local interstitial flow along endothelial tip cells at the end of the capillary sprout lumen. Computational fluid dynamics were used to model flow within a blind-ended vessel, transendothelial flow across the vessel wall, and flow within the surrounding perivascular/interstitial space. Shear stress along the wall of the tip cells was calculated while varying sprout length, perivascular space channel width, and vessel wall hydraulic conductivity. Increasing sprout length, increasing wall hydraulic conductivity, and decreasing perivascular space width increased shear stress magnitude. Wall shear stress magnitude within the lumen ranged from 0.015 to 0.55 dyne/cm2 at the sprout entrance and linearly decreased to near zero at the base of the tip cells. Tip cell wall shear stress magnitude due to interstitial flow ranged from 0.009 to 4.65 dyne/cm2. In 3 out of 8 cases, shear stress magnitude was above 1 dyne/cm2 and considered physiologically relevant. The results provide a framework for discussing the role of local mechanical cues in regulating endothelial cell dynamics involved in angiogenesis. Mainly, interstitial flows may generate physiologically relevant shear stresses on tip cells in certain scenarios. This source of tip cell shear stress has not been previously considered or modeled.


Assuntos
Capilares , Células Endoteliais , Capilares/fisiologia , Hidrodinâmica , Estresse Mecânico , Veias
2.
Tissue Eng Part C Methods ; 25(8): 447-458, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31280703

RESUMO

IMPACT STATEMENT: Microvascular remodeling, or angiogenesis, plays a central role in multiple pathological conditions, including cancer, diabetes, and ischemia. Tissue-engineered in vitro models have emerged as tools to elucidate the mechanisms that drive the angiogenic process. However, a major challenge with model development is recapitulating the physiological complexity of real microvascular networks, including incorporation of the entire vascular tree and hemodynamics. This study establishes a bioreactor system that incorporates real microvascular networks with physiological flow as a novel ex vivo tissue culture model, thereby providing a platform to evaluate angiogenesis in a physiologically relevant environment.


Assuntos
Reatores Biológicos , Microvasos/crescimento & desenvolvimento , Neovascularização Fisiológica , Animais , Microvasos/citologia , Ratos , Ratos Wistar , Técnicas de Cultura de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...