Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 29(5): 1164-1177.e5, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31665631

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of motor neurons. While several pathogenic mutations have been identified, the vast majority of ALS cases have no family history of disease. Thus, for most ALS cases, the disease may be a product of multiple pathways contributing to varying degrees in each patient. Using machine learning algorithms, we stratify the transcriptomes of 148 ALS postmortem cortex samples into three distinct molecular subtypes. The largest cluster, identified in 61% of patient samples, displays hallmarks of oxidative and proteotoxic stress. Another 19% of the samples shows predominant signatures of glial activation. Finally, a third group (20%) exhibits high levels of retrotransposon expression and signatures of TARDBP/TDP-43 dysfunction. We further demonstrate that TDP-43 (1) directly binds a subset of retrotransposon transcripts and contributes to their silencing in vitro, and (2) pathological TDP-43 aggregation correlates with retrotransposon de-silencing in vivo.


Assuntos
Esclerose Lateral Amiotrófica/classificação , Esclerose Lateral Amiotrófica/patologia , Córtex Cerebral/patologia , Neuroglia/patologia , Estresse Oxidativo , Mudanças Depois da Morte , Retroelementos/genética , Esclerose Lateral Amiotrófica/genética , Biomarcadores/metabolismo , Linhagem Celular , Estudos de Coortes , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Inativação Gênica , Humanos , Estresse Oxidativo/genética , Ligação Proteica/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/genética
2.
PLoS Genet ; 13(3): e1006635, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28301478

RESUMO

Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are two incurable neurodegenerative disorders that exist on a symptomological spectrum and share both genetic underpinnings and pathophysiological hallmarks. Functional abnormality of TAR DNA-binding protein 43 (TDP-43), an aggregation-prone RNA and DNA binding protein, is observed in the vast majority of both familial and sporadic ALS cases and in ~40% of FTLD cases, but the cascade of events leading to cell death are not understood. We have expressed human TDP-43 (hTDP-43) in Drosophila neurons and glia, a model that recapitulates many of the characteristics of TDP-43-linked human disease including protein aggregation pathology, locomotor impairment, and premature death. We report that such expression of hTDP-43 impairs small interfering RNA (siRNA) silencing, which is the major post-transcriptional mechanism of retrotransposable element (RTE) control in somatic tissue. This is accompanied by de-repression of a panel of both LINE and LTR families of RTEs, with somewhat different elements being active in response to hTDP-43 expression in glia versus neurons. hTDP-43 expression in glia causes an early and severe loss of control of a specific RTE, the endogenous retrovirus (ERV) gypsy. We demonstrate that gypsy causes the degenerative phenotypes in these flies because we are able to rescue the toxicity of glial hTDP-43 either by genetically blocking expression of this RTE or by pharmacologically inhibiting RTE reverse transcriptase activity. Moreover, we provide evidence that activation of DNA damage-mediated programmed cell death underlies both neuronal and glial hTDP-43 toxicity, consistent with RTE-mediated effects in both cell types. Our findings suggest a novel mechanism in which RTE activity contributes to neurodegeneration in TDP-43-mediated diseases such as ALS and FTLD.


Assuntos
Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Drosophila melanogaster/genética , Doenças Neurodegenerativas/genética , Retroelementos/genética , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Animais , Animais Geneticamente Modificados , Proteínas de Ligação a DNA/metabolismo , Drosophila melanogaster/metabolismo , Drosophila melanogaster/ultraestrutura , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/metabolismo , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Masculino , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Doenças Neurodegenerativas/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa
3.
Methods Mol Biol ; 1328: 217-30, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26324441

RESUMO

In the past decade, deep-sequencing approaches have greatly improved our knowledge of the genome's potential and have become a crucial milestone for new discoveries in genomics. Transcription is the first step of gene expression; therefore, the detection and measurement of transcription rates is of great interest. Here, a detailed protocol for global run-on sequencing (GRO-seq) library preparation from Drosophila ovaries is described. The method relies on rapid isolation of nuclei with halted transcription, then restarting transcription in physiological conditions in the presence of a labeled nucleotide. The newly transcribed nascent RNA is then isolated and cloned using a small RNA cloning protocol. Although it is time-consuming, the global run-on method allows the user to profile the position, orientation and amount of transcriptionally engaged RNA polymerases across the genome, therefore providing a snapshot of genome-wide transcription.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Ovário/metabolismo , RNA/genética , Animais , Drosophila melanogaster , Feminino , Biblioteca Gênica
4.
PLoS Genet ; 11(2): e1005013, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25695507

RESUMO

The RNase III enzyme DICER generates both microRNAs (miRNAs) and endogenous short interfering RNAs (endo-siRNAs). Both small RNA species silence gene expression post-transcriptionally in association with the ARGONAUTE (AGO) family of proteins. In mammals, there are four AGO proteins (AGO1-4), of which only AGO2 possesses endonucleolytic activity. siRNAs trigger endonucleolytic cleavage of target mRNAs, mediated by AGO2, whereas miRNAs cause translational repression and mRNA decay through association with any of the four AGO proteins. Dicer deletion in mouse oocytes leads to female infertility due to defects during meiosis I. Because mouse oocytes express both miRNAs and endo-siRNAs, this phenotype could be due to the absence of either class of small RNA, or both. However, we and others demonstrated that miRNA function is suppressed in mouse oocytes, which suggested that endo-siRNAs, not miRNAs, are essential for female meiosis. To determine if this was the case we generated mice that express a catalytically inactive knock-in allele of Ago2 (Ago2ADH) exclusively in oocytes and thereby disrupted the function of siRNAs. Oogenesis and hormonal response are normal in Ago2ADH oocytes, but meiotic maturation is impaired, with severe defects in spindle formation and chromosome alignment that lead to meiotic catastrophe. The transcriptome of these oocytes is widely perturbed and shows a highly significant correlation with the transcriptome of Dicer null and Ago2 null oocytes. Expression of the mouse transcript (MT), the most abundant transposable element in mouse oocytes, is increased. This study reveals that endo-siRNAs are essential during meiosis I in mouse females, demonstrating a role for endo-siRNAs in mammals.


Assuntos
Proteínas Argonautas/genética , Infertilidade Feminina/genética , Meiose/genética , RNA Interferente Pequeno/genética , Animais , Elementos de DNA Transponíveis/genética , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas/citologia , Células Germinativas/metabolismo , Camundongos , MicroRNAs/genética , Oócitos/metabolismo , RNA Interferente Pequeno/metabolismo
5.
Genes Dev ; 28(15): 1667-80, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25085419

RESUMO

Small noncoding RNAs that associate with Piwi proteins, called piRNAs, serve as guides for repression of diverse transposable elements in germ cells of metazoa. In Drosophila, the genomic regions that give rise to piRNAs, the so-called piRNA clusters, are transcribed to generate long precursor molecules that are processed into mature piRNAs. How genomic regions that give rise to piRNA precursor transcripts are differentiated from the rest of the genome and how these transcripts are specifically channeled into the piRNA biogenesis pathway are not known. We found that transgenerationally inherited piRNAs provide the critical trigger for piRNA production from homologous genomic regions in the next generation by two different mechanisms. First, inherited piRNAs enhance processing of homologous transcripts into mature piRNAs by initiating the ping-pong cycle in the cytoplasm. Second, inherited piRNAs induce installment of the histone 3 Lys9 trimethylation (H3K9me3) mark on genomic piRNA cluster sequences. The heterochromatin protein 1 (HP1) homolog Rhino binds to the H3K9me3 mark through its chromodomain and is enriched over piRNA clusters. Rhino recruits the piRNA biogenesis factor Cutoff to piRNA clusters and is required for efficient transcription of piRNA precursors. We propose that transgenerationally inherited piRNAs act as an epigenetic memory for identification of substrates for piRNA biogenesis on two levels: by inducing a permissive chromatin environment for piRNA precursor synthesis and by enhancing processing of these precursors.


Assuntos
Cromatina/metabolismo , Drosophila/genética , Drosophila/metabolismo , Regulação da Expressão Gênica , Precursores de RNA/metabolismo , Pequeno RNA não Traduzido/biossíntese , Pequeno RNA não Traduzido/genética , Animais , Cromatina/química , Cromatina/genética , Proteínas Cromossômicas não Histona/metabolismo , Metilação de DNA , Proteínas de Drosophila/metabolismo , Epigênese Genética , Histonas/metabolismo , Família Multigênica/genética , Ligação Proteica , Proteínas de Ligação a RNA/metabolismo , Transgenes
6.
Genes Dev ; 27(4): 400-12, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23392609

RESUMO

Silencing of transposons in the Drosophila ovary relies on three Piwi family proteins--Piwi, Aubergine (Aub), and Ago3--acting in concert with their small RNA guides, the Piwi-interacting RNAs (piRNAs). Aub and Ago3 are found in the germ cell cytoplasm, where they function in the ping-pong cycle to consume transposon mRNAs. The nuclear Piwi protein is required for transposon silencing in both germ and somatic follicle cells, yet the precise mechanisms by which Piwi acts remain largely unclear. We investigated the role of Piwi by combining cell type-specific knockdowns with measurements of steady-state transposon mRNA levels, nascent RNA synthesis, chromatin state, and small RNA abundance. In somatic cells, Piwi loss led to concerted effects on nascent transcripts and transposon mRNAs, indicating that Piwi acts through transcriptional gene silencing (TGS). In germ cells, Piwi loss showed disproportionate impacts on steady-state RNA levels, indicating that it also exerts an effect on post-transcriptional gene silencing (PTGS). Piwi knockdown affected levels of germ cell piRNAs presumably bound to Aub and Ago3, perhaps explaining its post-transcriptional impacts. Overall, our results indicate that Piwi plays multiple roles in the piRNA pathway, in part enforcing transposon repression through effects on local chromatin states and transcription but also participating in germ cell piRNA biogenesis.


Assuntos
Proteínas Argonautas/genética , Elementos de DNA Transponíveis/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Interferência de RNA , Animais , Proteínas Argonautas/metabolismo , Proteínas de Drosophila/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Ovário/metabolismo , Fatores de Iniciação de Peptídeos/genética , Fatores de Iniciação de Peptídeos/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
7.
Mol Biol Evol ; 30(2): 397-408, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23079419

RESUMO

Although small RNAs efficiently control transposition activity of most transposons in the host genome, such an immune system is not always applicable against a new transposon's invasions. Here, we explored a possibility to introduce potentially mobile copy of the Penelope retroelement previously implicated in hybrid dysgenesis syndrome in Drosophila virilis into the genomes of two distant Drosophila species. The consequences of such introduction were monitored at different phases after experimental colonization as well as in D. virilis species, which is apparently in the process of ongoing Penelope invasion. We investigated the expression of Penelope and biogenesis of Penelope-derived small RNAs in D. virilis and D. melanogaster strains originally lacking active copies of this element after experimental Penelope invasion. These strains were transformed by constructs containing intact Penelope copies. We show that immediately after transformation, which imitates the first stage of retroelement invasion, Penelope undergoes transposition predominantly in somatic tissues, and may produce siRNAs that are apparently unable to completely silence its activity. However, at the later stages of colonization Penelope copies may jump into one of the piRNA-clusters, which results in production of homologous piRNAs that are maternally deposited and can silence euchromatic transcriptionally active copies of Penelope in trans and, hence, prevent further amplification of the invader in the host genome. Intact Penelope copies and different classes of Penelope-derived small RNAs were found in most geographical strains of D. virilis collected throughout the world. Importantly, all strains of this species containing full-length Penelope tested do not produce gonadal sterility in dysgenic crosses and, hence, exhibit neutral cytotype. To understand whether RNA interference mechanism able to target Penelope operates in related species of the virilis group, we correlated the presence of full-length and potentially active Penelope with the occurrence of piRNAs homologous to this transposable element in the ovaries of species comprising the group. It was demonstrated that Penelope-derived piRNAs are present in all virilis group species containing full-length but transcriptionally silent copies of this element that probably represent the remnants of its previous invasions taking place in the course of the virilis species divergent evolution.


Assuntos
Evolução Biológica , Drosophila/genética , RNA Interferente Pequeno/genética , Retroelementos , Animais , Animais Geneticamente Modificados , Drosophila/metabolismo , Feminino , Ordem dos Genes , Genoma de Inseto , Masculino , Interferência de RNA , RNA Interferente Pequeno/metabolismo
8.
Int J Dev Biol ; 57(9-10): 731-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24395561

RESUMO

Hybrid dysgenesis (HD) syndrome in Drosophila virilis presumably results from the mobilization of several unrelated mobile genetic elements in dysgenic hybrids. Morphogenetic events during oogenesis and spermatogenesis were investigated in detail in the progeny of D. virilis dysgenic crosses. Using germ-cell specific anti-Vasa staining, we monitored the fate of germline cells at different ontogenetic stages in strains of D. virilis and their hybrids. Anti-Vasa staining indicated that the major loss of pole cells occurs in dysgenic embryos at stage 11-14 after primordial germ cells (PGC) pass the midgut wall. At later ontogenetic stages, including larvae, pupae and imagoes, we often observed an abnormal development of gonads in dysgenic individuals with a frequent occurrence of unilateral and bilateral gonadal atrophy. Dysgenic females were characterized by the presence of various sterile ovarian phenotypes that predominantly include agametic ovarioles, while other atypical forms such as tumor-like ovarioles and dorsalized ovariolar follicles may also be present. Testis abnormalities were also frequently observed in dysgenic males. The sterility manifestations depended on the strain, the growing temperature and the age of the flies used in crosses. The observed gonadal sterility and other HD manifestations correlated with the absence of maternal piRNAs homologous to Penelope and other transposons in the early dysgenic embryos. We speculate that gonadal abnormalities mimicking several known sterility mutations probably result from the disturbance of developmental gene expression machinery due to the activation of unrelated families of transposons in early dysgenic embryos.


Assuntos
Disgenesia Gonadal/embriologia , Disgenesia Gonadal/genética , Sequências Repetitivas Dispersas/genética , Oogênese/genética , Espermatogênese/genética , Animais , Cruzamentos Genéticos , Elementos de DNA Transponíveis/genética , Drosophila/genética , Gônadas/embriologia , Masculino , Óvulo/citologia , RNA Interferente Pequeno , Espermatozoides/anormalidades , Espermatozoides/citologia
9.
RNA ; 18(1): 42-52, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22096018

RESUMO

In animals a discrete class of small RNAs, the piwi-interacting RNAs (piRNAs), guard germ cell genomes against the activity of mobile genetic elements. piRNAs are generated, via an unknown mechanism, from apparently single-stranded precursors that arise from discrete genomic loci, termed piRNA clusters. Presently, little is known about the signals that distinguish a locus as a source of piRNAs. It is also unknown how individual piRNAs are selected from long precursor transcripts. To address these questions, we inserted new artificial sequence information into piRNA clusters and introduced these marked clusters as transgenes into heterologous genomic positions in mice and flies. Profiling of piRNA from transgenic animals demonstrated that artificial sequences were incorporated into the piRNA repertoire. Transgenic piRNA clusters are functional in non-native genomic contexts in both mice and flies, indicating that the signals that define piRNA generative loci must lie within the clusters themselves rather than being implicit in their genomic position. Comparison of transgenic animals that carry insertions of the same artificial sequence into different ectopic piRNA-generating loci showed that both local and long-range sequence environments inform the generation of individual piRNAs from precursor transcripts.


Assuntos
Drosophila melanogaster/metabolismo , RNA Interferente Pequeno/biossíntese , Animais , Drosophila melanogaster/genética , Camundongos , Camundongos Transgênicos , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética
10.
PLoS One ; 6(7): e21883, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21779346

RESUMO

Transposition of two retroelements (Ulysses and Penelope) mobilized in the course of hybrid dysgenesis in Drosophila virilis has been investigated by in situ hybridization on polytene chromosomes in two D. virilis strains of different cytotypes routinely used to get dysgenic progeny. The analysis has been repeatedly performed over the last two decades, and has revealed transpositions of Penelope in one of the strains, while, in the other strain, the LTR-containing element Ulysses was found to be transpositionally active. The gypsy retroelement, which has been previously shown to be transpositionally inactive in D. virilis strains, was also included in the analysis. Whole mount is situ hybridization with the ovaries revealed different subcellular distribution of the transposable elements transcripts in the strains studied. Ulysses transpositions occur only in the strain where antisense piRNAs homologous to this TE are virtually absent and the ping-pong amplification loop apparently does not take place. On the other hand small RNAs homologous to Penelope found in the other strain, belong predominantly to the siRNA category (21nt), and consist of sense and antisense species observed in approximately equal proportion. The number of Penelope copies in the latter strain has significantly increased during the last decades, probably because Penelope-derived siRNAs are not maternally inherited, while the low level of Penelope-piRNAs, which are faithfully transmitted from mother to the embryo, is not sufficient to silence this element completely. Therefore, we speculate that intrastrain transposition of the three retroelements studied is controlled predominantly at the post-transcriptional level.


Assuntos
Elementos de DNA Transponíveis/genética , Drosophila/genética , Retroelementos/genética , Animais , Feminino , Hibridização In Situ , Masculino , Ovário/metabolismo , Cromossomos Politênicos/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
11.
RNA ; 16(8): 1634-45, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20581131

RESUMO

Colonization of a host by an active transposon can increase mutation rates or cause sterility, a phenotype termed hybrid dysgenesis. As an example, intercrosses of certain Drosophila virilis strains can produce dysgenic progeny. The Penelope element is present only in a subset of laboratory strains and has been implicated as a causative agent of the dysgenic phenotype. We have also introduced Penelope into Drosophila melanogaster, which are otherwise naive to the element. We have taken advantage of these natural and experimentally induced colonization processes to probe the evolution of small RNA pathways in response to transposon challenge. In both species, Penelope was predominantly targeted by endo-small-interfering RNAs (siRNAs) rather than by piwi-interacting RNAs (piRNAs). Although we do observe correlations between Penelope transcription and dysgenesis, we could not correlate differences in maternally deposited Penelope piRNAs with the sterility of progeny. Instead, we found that strains that produced dysgenic progeny differed in their production of piRNAs from clusters in subtelomeric regions, possibly indicating that changes in the overall piRNA repertoire underlie dysgenesis. Considered together, our data reveal unexpected plasticity in small RNA pathways in germ cells, both in the character of their responses to invading transposons and in the piRNA clusters that define their ability to respond to mobile elements.


Assuntos
Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Drosophila/genética , Animais , Quimera/metabolismo , Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Células Germinativas/metabolismo , Mutação , RNA/genética , RNA/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Retroelementos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...