Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Talanta ; 187: 200-206, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29853036

RESUMO

High performance liquid chromatography (HPLC) with a solvent gradient and absorbance detection is one of the most widely used methods in analytical chemistry. The observed absorbance baseline is affected by the changes in the refractive index (RI) of the mobile phase. Near the limited of detection, this complicates peak quantitation. The general aspects of these RI-induced apparent absorbance effects are discussed. Two different detectors with fundamentally different optics and flow cell concepts, a variable-wavelength detector equipped with a conventional flow cell and a diode-array detector equipped with a liquid core waveguide flow cell, are compared with respect to their RI behavior. A simple method to separate static - partly unavoidable - RI effects from dynamic RI effects is presented. It is shown that the dynamic RI behavior of an absorbance detector can be well described using a single, relatively easy-to-determine metric called the G-index. The G-index is typically in the order of a few seconds and its sign depends on the optical flow cell concept.

2.
Anal Chem ; 85(10): 4829-35, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23593980

RESUMO

Absorption spectrophotometry has been and still is the industry standard for detection in HPLC. Limit of detection (LOD) and linear dynamic range (LDR) are the primary performance requirements and have driven continuous improvement of spectrophotometric HPLC detectors. Recent advances in HPLC column technology have led to low flow-rate HPLC such as capillary HPLC and nanoflow HPLC and put higher demands on optical HPLC signal detection. However, fundamental principles in spectrophotometric HPLC detection have not been reviewed for many years. In particular the relationship between the detector's signal-to-noise ratio (SNR) and band broadening needs to be re-evaluated. In this work, a new quantitative model is presented which allows the calculation of the trade-off made between chromatographic resolution and SNR in spectrophotometric HPLC detection. Modern optics flow cells based on total internal reflection are included and compared to conventional flow cells.

3.
Anal Chem ; 81(24): 10193-200, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19916548

RESUMO

This work investigates the impact of conduit geometry on the chromatographic performance of typical particulate microchip packings. For this purpose, high-performance liquid chromatography (HPLC)/UV-microchips with separation channels of quadratic, trapezoidal, or Gaussian cross section were fabricated by direct laser ablation and lamination of multiple polyimide layers and then slurry-packed with either 3 or 5 microm spherical porous C8-silica particles under optimized packing conditions. Experimentally determined plate height curves for the empty microchannels are compared with dispersion coefficients from theoretical calculations. Packing densities and plate height curves for the various microchip packings are presented and conclusively explained. The 3 microm packings display a high packing density irrespective of their conduit geometries, and their performance reflects the dispersion behavior of the empty channels. Dispersion in 5 microm packings correlates with the achieved packing densities, which are limited by the number and accessibility of corners in a given conduit shape.


Assuntos
Técnicas Analíticas Microfluídicas/instrumentação , Benzeno/análise , Derivados de Benzeno/análise , Cromatografia Líquida de Alta Pressão , Técnicas Analíticas Microfluídicas/métodos , Tamanho da Partícula , Porosidade , Resinas Sintéticas/química , Dióxido de Silício/química , Propriedades de Superfície , Raios Ultravioleta , Uracila/análise
4.
J Chromatogr A ; 1216(2): 264-73, 2009 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-19091319

RESUMO

HPLC microchips are investigated experimentally with respect to packing density, pressure drop-flow rate relation, hydraulic permeability, and separation efficiency. The prototype microchips provide minimal dead volume, on-chip UV detection, and a 75 mm long separation channel with a ca. 50 microm x 75 microm trapezoidal cross-section. A custom-built stainless-steel holder allowed to adopt optimized packing conditions. Separation channels were slurry-packed with 3, 5, and 10 microm-sized spherical, porous C8-silica particles. Differences in interparticle porosity, permeability, and plate height data are analyzed and consistently explained by different microchannel-to-particle size (particle-aspect) ratios and particle size distributions.


Assuntos
Cromatografia Líquida de Alta Pressão/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Algoritmos , Fenômenos Químicos , Imidas/química , Modelos Lineares , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Permeabilidade , Porosidade , Dióxido de Silício
5.
Anal Chem ; 80(15): 5945-50, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18543954

RESUMO

We report an experimental study of separation efficiency in microchip high-performance liquid chromatography (HPLC). For this study, prototype HPLC microchips were developed that are characterized by minimal dead volume, a separation channel with trapezoidal cross section, and on-chip UV detection. A custom-built stainless steel holder enabled microchip packing under pressures of up to 400 bar and ultrasonication. Bed densities were investigated with respect to the packing conditions and consistently related to pressure drop over the packed microchannels and separation efficiency under isocratic elution conditions. The derived plate height curves show a decrease of mobile phase mass transfer resistance with increasing bed density. High bed densities are critical to separation performance in noncylindrical packed beds, because only at low bed porosities does hydrodynamic dispersion in noncylindrical packings come close to that of cylindrical packings. At higher bed porosities, the presence of fluid channels of advanced flow velocity in the corners of noncylindrical packings affects hydrodynamic dispersion strongly. We demonstrate that the separation channels of HPLC microchips can be packed as densely as the cylindrical fused-silica capillaries used in nano-HPLC and that consequently microchip-HPLC separation efficiencies comparable to those of nano-HPLC can be achieved.

6.
J Sep Sci ; 30(3): 407-13, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17396600

RESUMO

Preparation of monolithic capillary columns for separations in the CEC mode using UV-initiated polymerization of the plain monolith followed by functionalization of its pore surface by photografting has been studied. The first step enabled the preparation of generic poly(butyl methacrylate-co-ethylene dimethacrylate) monoliths with optimized porous properties, controlled by the percentages of porogens 1-decanol and cyclohexanol in the polymerization mixture, irradiation time, and UV light intensity. Ionizable monomers [2-(methacryloyloxy)ethyl]trimethylammonium chloride or 2-acryloamido-2-methyl-1-propanesulfonic acid were then photografted onto the monolithic matrix, allowing us to control the direction of the EOF in CEC. Different strategies were applied to control the grafting density and, thereby, the magnitude of the EOF. To control the hydrophobic properties, two approaches were tested: (i) cografting of a mixture of the ionizable and hydrophobic monomers and (ii) sequential grafting of the ionizable and hydrophobic monomers. Cografting resulted in similar retention but higher EOF. With sequential grafting, more than 50% increase in retention factors was obtained and a slight decrease in EOF was observed due to shielding of the ionizable moieties.


Assuntos
Eletrocromatografia Capilar/métodos , Metacrilatos/química , Eletrocromatografia Capilar/instrumentação , Microscopia Eletrônica de Varredura , Fotoquímica , Propriedades de Superfície
7.
J Chromatogr A ; 1109(1): 74-9, 2006 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-16188265

RESUMO

Methacrylate-ester-based monoliths containing quaternary ammonium groups were prepared in situ in capillary columns and in simultaneous experiments in vials, employing thermal initiation. The chromatographic properties of the monoliths were determined with capillary electrochromatography (CEC), and their morphology was studied with mercury-intrusion porosimetry on the bulk materials. Materials with different, well repeatable pore-size distributions could be prepared. A satisfactory column-to-column and run-to-run repeatability was obtained for the electro-osmotic mobility, the retention characteristics (k-values) and the efficiency on the columns prepared and tested in the CEC mode. A relatively high electro-osmotic flow was observed in the direction of the positive electrode. The electro-osmotic mobility was found to be influenced only marginally by mobile-phase parameters such as the pH, ionic strength, and acetonitrile content. The retention behavior of the monolithic columns was similar to that of columns packed with C18-modified silica particles. Columns could be prepared with optimum plate heights ranging from 6 microm for unretained compounds to 20 microm for well retained (k=2.5) polyaromatic hydrocarbons. However, for specific analytes a - still unexplained - lower chromatographic column efficiency was observed.


Assuntos
Cromatografia Capilar Eletrocinética Micelar/instrumentação , Eletroforese Capilar/instrumentação , Metacrilatos/química , Octoxinol/isolamento & purificação , Concentração Osmolar , Porosidade , Reprodutibilidade dos Testes
8.
J Chromatogr A ; 1104(1-2): 256-62, 2006 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-16364339

RESUMO

A method is proposed for the comprehensive characterization and comparison of columns in the high-performance liquid chromatographic (HPLC) and capillary electrochromatographic (CEC) modes. Using this approach, column parameters such as the number of plates, the eddy-diffusion and mass-transfer contributions to peak broadening, the permeability, and the analysis time are incorporated in a single graph and a comparison in terms of efficiency and speed is obtained. The chromatographic performance of silica-based and polymer-based monolithic capillary columns is discussed and a comparison is made with the performance of packed columns. Also, the potential of ultra-high-pressure liquid chromatography is discussed in this context. In the HPLC mode, the best results were obtained with silica monoliths; in the CEC mode, the low-density methacrylate-ester-based monoliths showed the best performance.


Assuntos
Cromatografia Líquida de Alta Pressão/instrumentação , Cromatografia Capilar Eletrocinética Micelar/instrumentação , Equipamentos e Provisões/normas
9.
Anal Chem ; 77(22): 7342-7, 2005 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-16285684

RESUMO

Methacrylate ester-based monolithic stationary phases were prepared in situ in fused-silica capillaries and simultaneously in vials. The influence of the composition of the polymerization mixture on the morphology was studied with mercury intrusion porosimetry, scanning electron microscopy, and nitrogen adsorption measurements. A high-density porous polymeric material with a unimodal pore-size distribution was prepared with 40 wt % monomers and 60 wt % solvent in the mixture. A low-density material, prepared with a 20:80 ratio of monomers versus pore-forming solvent, showed a bimodal pore-size distribution and a much finer structure than the high-density monolith. The characteristic pore size could be controlled by changing the ratio of pore-forming solvents. With increasing solvent polarity, both the pore size and the dimension of the globules increased. The best efficiency in the CEC mode was obtained with an average pore size of 600 nm. Low-density monoliths exhibited lower A- and C-terms than high-density monoliths. With the optimal monolithic material, a minimum plate height of 5 mum could be obtained. The low-density monolith also performed better in the HPLC mode, giving a minimum plate height of 15 mum and a much higher flow permeability than that of the high-density material.

10.
J Chromatogr A ; 1044(1-2): 311-6, 2004 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-15354453

RESUMO

The influence of the aspect ratio, rho (rho = column diameter/particle diameter), on column parameters such as efficiency, retention factors and flow resistance was studied in both high-performance liquid chromatography and capillary electrochromatography with packed capillary columns. In order to compare the true efficiencies of different columns, a procedure to account for external band broadening was applied. High efficiencies (reduced plate height h approximately 2) were obtained with capillary columns with internal diameters of 150-, 100-, and 75-microm, packed with 10-microm particles. In contrast to previous reports in the literature, no significant improvements in efficiency or flow resistance were observed when the aspect ratio of such columns was decreased. Our observations suggest that the wall effect in these types of columns is not significant. When the aspect ratio was decreased by increasing the particle size, a decrease in reduced plate height was observed. However, the results of flow resistance measurements showed that the latter effect should be attributed to differences in packing and particle batch quality rather than to differences in the aspect ratio.


Assuntos
Cromatografia Líquida de Alta Pressão/instrumentação , Cromatografia Capilar Eletrocinética Micelar/instrumentação , Pressão
11.
J Sep Sci ; 27(17-18): 1431-40, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15638151

RESUMO

A comparison is made between the efficiency of microparticulate capillary columns and silica and polymer-based monolithic capillary columns in the pressure-driven (high-performance liquid chromatography) and electro-driven (capillary electrochromatography) modes. With packed capillary columns similar plate heights are possible as with conventional packed columns. However, a large variation is observed in the plate heights for individual columns. This can only be explained by differences in the quality of the packed bed. The minimum plate height obtained with silica monolithic capillary columns in the HPLC mode is approximately 10 microm, which is comparable to that of columns packed with 5-microm particles. The permeability of wide-pore silica monoliths was found to be much higher than that of comparable microparticulate columns, which leads to much lower pressure drops for the same eluent at the same linear mobile phase velocity. For polymer-based monolithic columns (acrylamide, styrene/divinyl benzene, methacrylate, acrylate) high efficiencies have been found in the CEC mode with minimum plate heights between 2 and 10 microm. However, in the HPLC mode minimum plate heights in the range of 10 to 25 microm have been reported.


Assuntos
Cromatografia Líquida de Alta Pressão/instrumentação , Permeabilidade
12.
Electrophoresis ; 24(22-23): 3935-61, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14661228

RESUMO

The most recent and important applications in capillary electrochromatography (CEC) are summarized, covering literature published since May 2001. A selection of new developments in stationary phases for CEC is highlighted, and enantiomeric separations and chiral stationary phases are discussed. Also, CEC applications of biological molecules, pharmaceuticals, and applications in the field of industrial and environmental analysis are summarized. For this review three modes of CEC were taken into account, i.e., packed-column CEC, CEC using monolith technology, and open-tubular CEC.


Assuntos
Aminoácidos/análise , Carboidratos/análise , Nucleotídeos/análise , Peptídeos/análise , Esteroides/análise , Cromatografia Líquida , Herbicidas/análise , Inseticidas/análise , Praguicidas/análise , Polímeros/química , Vitaminas/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...