Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NPJ Vaccines ; 9(1): 73, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580714

RESUMO

Immune responses to COVID-19 vaccination are attenuated in adult solid organ transplant recipients (SOTRs) and additional vaccine doses are recommended for this population. However, whether COVID-19 mRNA vaccine responses are limited in pediatric SOTRs (pSOTRs) compared to immunocompetent children is unknown. Due to SARS-CoV-2 evolution and mutations that evade neutralizing antibodies, T cells may provide important defense in SOTRs who mount poor humoral responses. Therefore, we assessed anti-SARS-CoV-2 IgG titers, surrogate neutralization, and spike (S)-specific T-cell responses to COVID-19 mRNA vaccines in pSOTRs and their healthy siblings (pHCs) before and after the bivalent vaccine dose. Despite immunosuppression, pSOTRs demonstrated humoral responses to both ancestral strain and Omicron subvariants following the primary ancestral strain monovalent mRNA COVID-19 series and multiple booster doses. These responses were not significantly different from those observed in pHCs and significantly higher six months after vaccination than responses in adult SOTRs two weeks post-vaccination. However, pSOTRs mounted limited S-specific CD8+ T-cell responses and qualitatively distinct CD4+ T-cell responses, primarily producing IL-2 and TNF with less IFN-γ production compared to pHCs. Bivalent vaccination enhanced humoral responses in some pSOTRs but did not shift the CD4+ T-cell responses toward increased IFN-γ production. Our findings indicate that S-specific CD4+ T cells in pSOTRs have distinct qualities with unknown protective capacity, yet vaccination produces cross-reactive antibodies not significantly different from responses in pHCs. Given altered T-cell responses, additional vaccine doses in pSOTRs to maintain high titer cross-reactive antibodies may be important in ensuring protection against SARS-CoV-2.

2.
J Infect Dis ; 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38299308

RESUMO

BACKGROUND: Multisystem inflammatory syndrome in children (MIS-C) is a hyperinflammatory condition caused by recent SARS-CoV-2 infection, but the underlying immunological mechanisms driving this distinct syndrome are unknown. METHODS: We utilized high dimensional flow cytometry, cell-free (cf) DNA, and cytokine and chemokine profiling to identify mechanisms of critical illness distinguishing MIS-C from severe acute COVID-19 (SAC). RESULTS: Compared to SAC, MIS-C patients demonstrated profound innate immune cell death and features of emergency myelopoiesis (EM), an understudied phenomenon observed in severe inflammation. EM signatures were characterized by fewer mature myeloid cells in the periphery and decreased expression of HLA-DR and CD86 on antigen presenting cells. IL-27, a cytokine known to drive hematopoietic stem cells towards EM, was increased in MIS-C, and correlated with immature cell signatures in MIS-C. Upon recovery, EM signatures decreased, and IL-27 plasma levels returned to normal levels. Despite profound lymphopenia, we report a lack of cfDNA released by adaptive immune cells and increased CCR7 expression on T cells indicative of egress out of peripheral blood. CONCLUSIONS: Immune cell signatures of EM combined with elevated innate immune cell-derived cfDNA levels distinguish MIS-C from SAC in children and provide mechanistic insight into dysregulated immunity contributing towards MIS-C, offering potential diagnostic and therapeutic targets.

4.
J Clin Invest ; 133(21)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37651206

RESUMO

Multisystem inflammatory syndrome in children (MIS-C) is a rare but life-threatening hyperinflammatory condition induced by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes pediatric COVID-19 (pCOVID-19). The relationship of the systemic tissue injury to the pathophysiology of MIS-C is poorly defined. We leveraged the high sensitivity of epigenomics analyses of plasma cell-free DNA (cfDNA) and plasma cytokine measurements to identify the spectrum of tissue injury and glean mechanistic insights. Compared with pediatric healthy controls (pHCs) and patients with pCOVID-19, patients with MIS-C had higher levels of cfDNA primarily derived from innate immune cells, megakaryocyte-erythroid precursor cells, and nonhematopoietic tissues such as hepatocytes, cardiac myocytes, and kidney cells. Nonhematopoietic tissue cfDNA levels demonstrated significant interindividual variability, consistent with the heterogenous clinical presentation of MIS-C. In contrast, adaptive immune cell-derived cfDNA levels were comparable in MIS-C and pCOVID-19 patients. Indeed, the cfDNA of innate immune cells in patients with MIS-C correlated with the levels of innate immune inflammatory cytokines and nonhematopoietic tissue-derived cfDNA, suggesting a primarily innate immunity-mediated response to account for the multisystem pathology. These data provide insight into the pathogenesis of MIS-C and support the value of cfDNA as a sensitive biomarker to map tissue injury in MIS-C and likely other multiorgan inflammatory conditions.


Assuntos
COVID-19 , Ácidos Nucleicos Livres , Humanos , Criança , COVID-19/genética , SARS-CoV-2 , Ácidos Nucleicos Livres/genética , Citocinas
5.
Vaccine ; 40(47): 6818-6829, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36253217

RESUMO

Following influenza A virus (IAV) infection or vaccination during pregnancy, maternal antibodies are transferred to offspring in utero and during lactation. The age and sex of offspring may differentially impact the transfer and effects of maternal immunity on offspring. To evaluate the effects of maternal IAV infection on immunity in offspring, we intranasally inoculated pregnant mice with sublethal doses of mouse-adapted (ma) H1N1, maH3N2, or media (mock) at embryonic day 10. In offspring of IAV-infected dams, maternal subtype-specific antibodies peaked at postnatal day (PND) 23, remained detectable through PND 50, and were undetectable by PND 105 in both sexes. When offspring were challenged with homologous IAV at PND 23, both male and female offspring had greater clearance of pulmonary virus and less morbidity and mortality than offspring from mock-inoculated dams. Inactivated influenza vaccination (IIV) against homologous IAV at PND 23 caused lower vaccine-induced antibody responses and protection following live virus challenge in offspring from IAV than mock-infected dams, with this effect being more pronounced among female than male offspring. At PND 105, there was no impact of maternal infection status, but vaccination induced greater antibody responses and protection against challenge in female than male offspring of both IAV-infected and mock-inoculated dams. To determine if maternal antibody or infection interfered with vaccine-induced immunity and protection in early life, offspring were vaccinated and challenged against a heterosubtypic IAV (i.e., different IAV group than dam) at PND 23 or 105. Heterosubtypic IAV maternal immunity did not affect antibody responses after IIV or protection after live IAV challenge of vaccinated offspring at either age. Subtype-specific maternal IAV antibodies, therefore, provide protection independent of offspring sex but interfere with vaccine-induced immunity and protection in offspring with more pronounced effects among females than males.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Gravidez , Camundongos , Masculino , Feminino , Animais , Humanos , Anticorpos Antivirais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...