Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Virol ; 95(18): e0088321, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34232738

RESUMO

Most icosahedral viruses condense their genomes into volumetrically constrained capsids. However, concurrent genome biosynthesis and packaging are specific to single-stranded DNA (ssDNA) viruses. ssDNA genome packaging combines elements found in both double-stranded DNA (dsDNA) and ssRNA systems. Similar to dsDNA viruses, the genome is packaged into a preformed capsid. Like ssRNA viruses, there are numerous capsid-genome associations. In ssDNA microviruses, the DNA-binding protein J guides the genome between 60 icosahedrally ordered DNA binding pockets. It also partially neutralizes the DNA's negative phosphate backbone. ϕX174-related microviruses, such as G4 and α3, have J proteins that differ in length and charge organization. This suggests that interchanging J proteins could alter the path used to guide DNA in the capsid. Previously, a ϕXG4J chimera, in which the ϕX174 J gene was replaced with the G4 gene, was characterized. It displayed lethal packaging defects, which resulted in procapsids being removed from productive assembly. Here, we report the characterization of another inviable chimera, ϕXα3J. Unlike ϕXG4J, ϕXα3J efficiently packaged DNA but produced noninfectious particles. These particles displayed a reduced ability to attach to host cells, suggesting that internal DNA organization could distort the capsid's outer surface. Mutations that restored viability altered J-coat protein contact sites. These results provide evidence that the organization of ssDNA can affect both packaging and postpackaging phenomena. IMPORTANCE ssDNA viruses utilize icosahedrally ordered protein-nucleic acids interactions to guide and organize their genomes into preformed shells. As previously demonstrated, chaotic genome-capsid associations can inhibit ϕX174 packaging by destabilizing packaging complexes. However, the consequences of poorly organized genomes may extend beyond the packaging reaction. As demonstrated herein, it can lead to uninfectious packaged particles. Thus, ssDNA genomes should be considered an integral and structural virion component, affecting the properties of the entire particle, which includes the capsid's outer surface.


Assuntos
Bacteriófago phi X 174/genética , Proteínas do Capsídeo/genética , Capsídeo/metabolismo , DNA de Cadeia Simples/genética , DNA Viral/genética , Genoma Viral , Montagem de Vírus , Capsídeo/química , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Empacotamento do DNA , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/virologia , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo , Vírion
2.
Viruses ; 12(6)2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32580341

RESUMO

Bacteriophage ϕX174 uses a decamer of DNA piloting proteins to penetrate its host. These proteins oligomerize into a cell wall-spanning tube, wide enough for genome passage. While the inner surface of the tube is primarily lined with inward-facing amino acid side chains containing amide and guanidinium groups, there is a 28 Å-long section near the tube's C-terminus that does not exhibit this motif. The majority of the inward-facing residues in this region are conserved across the three ϕX174-like clades, suggesting that they play an important role during genome delivery. To test this hypothesis, and explore the general function of the tube's inner surface, non-glutamine residues within this region were mutated to glutamine, while existing glutamine residues were changed to serine. Four of the resulting mutants had temperature-dependent phenotypes. Virion assembly, host attachment, and virion eclipse, defined as the cell's ability to inactivate the virus, were not affected. Genome delivery, however, was inhibited. The results support a model in which a balance of forces governs genome delivery: potential energy provided by the densely packaged viral genome and/or an osmotic gradient move the genome into the cell, while the tube's inward facing glutamine residues exert a frictional force, or drag, that controls genome release.


Assuntos
Bacteriófago phi X 174/genética , Proteínas do Capsídeo/genética , DNA Viral/metabolismo , Proteínas da Cauda Viral/genética , Internalização do Vírus , Sequência de Aminoácidos , Transporte Biológico/fisiologia , Cristalografia por Raios X , DNA Viral/genética , Genoma Viral/genética , Mutagênese , Proteínas da Cauda Viral/metabolismo
3.
J Virol ; 94(2)2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31666371

RESUMO

In microviruses, 60 copies of the positively charged DNA binding protein J guide the single-stranded DNA genome into the icosahedral capsid. Consequently, ∼12% of the genome is icosahedrally ordered within virions. Although the internal volume of the ϕX174, G4, and α3 capsids are nearly identical, their genome lengths vary widely from 5,386 (ϕX174) to 6,067 (α3) nucleotides. As the genome size increases, the J protein's length and charge decreases. The ϕX174 J protein is 37 amino acids long and has a charge of +12, whereas the 23-residue G4 and α3 proteins have respective +6 and +8 charges. While the large ϕX174 J protein can substitute for the smaller ones, the converse is not true. Thus, the smallest genome, ϕX174, requires the more stringent J protein packaging guide. To investigate this further, a chimeric virus (ϕXG4J) was generated by replacing the indigenous ϕX174 J gene with that of G4. The resulting mutant, ϕXG4J, was not viable on the level of plaque formation without ϕX174 J gene complementation. During uncomplemented infections, capsids dissociated during packaging or quickly thereafter. Those that survived were significantly less stable and infectious than the wild type. Complementation-independent ϕXG4J variants were isolated. They contained duplications that increased genome size by as much as 3.8%. Each duplication started at nucleotide 991, creating an additional DNA substrate for the unessential but highly conserved A* protein. Accordingly, ϕXG4J viability and infectivity was also restored by the exogenous expression of a cloned A* gene.IMPORTANCE Double-stranded DNA viruses typically package their genomes into a preformed capsid. In contrast, single-stranded RNA viruses assemble their coat proteins around their genomes via extensive nucleotide-protein interactions. Single-stranded DNA (ssDNA) viruses appear to blend both strategies, using nucleotide-protein interactions to organize their genomes into preformed shells, likely by a controlled process. Chaotic genome-capsid associations could inhibit packaging or genome release during the subsequent infection. This process appears to be partially controlled by the unessential A* protein, a shorter version of the essential A protein that mediates rolling-circle DNA replication. Protein A* may elevate fitness by ensuring the product fidelity of packaging reactions. This phenomenon may be widespread in ssDNA viruses that simultaneously synthesize and package DNA with rolling circle and rolling circle-like DNA replication proteins. Many of these viruses encode smaller, unessential, and/or functionally undefined in-frame versions of A/A*-like proteins.


Assuntos
Bacteriófago phi X 174/fisiologia , Capsídeo/metabolismo , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/metabolismo , Escherichia coli/virologia , Proteínas Virais/metabolismo , Montagem de Vírus/fisiologia , Proteínas de Ligação a DNA/genética , Genoma Viral/fisiologia , Proteínas Virais/genética
4.
J Virol ; 93(3)2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30429341

RESUMO

Although microviruses do not possess a visible tail structure, one vertex rearranges after interacting with host lipopolysaccharides. Most examinations of host range, eclipse, and penetration were conducted before this "host-induced" unique vertex was discovered and before DNA sequencing became routine. Consequently, structure-function relationships dictating host range remain undefined. Biochemical and genetic analyses were conducted with two closely related microviruses, α3 and ST-1. Despite ∼90% amino acid identity, the natural host of α3 is Escherichia coli C, whereas ST-1 is a K-12-specific phage. Virions attached and eclipsed to both native and unsusceptible hosts; however, they breached only the native host's cell wall. This suggests that unsusceptible host-phage interactions promote off-pathway reactions that can inactivate viruses without penetration. This phenomenon may have broader ecological implications. To determine which structural proteins conferred host range specificity, chimeric virions were generated by individually interchanging the coat, spike, or DNA pilot proteins. Interchanging the coat protein switched host range. However, host range expansion could be conferred by single point mutations in the coat protein. The expansion phenotype was recessive: genetically mutant progeny from coinfected cells did not display the phenotype. Thus, mutant isolation required populations generated in environments with low multiplicities of infection (MOI), a phenomenon that may have impacted past host range studies in both prokaryotic and eukaryotic systems. The resulting genetic and structural data were consistent enough that host range expansion could be predicted, broadening the classical definition of antireceptors to include interfaces between protein complexes within the capsid.IMPORTANCE To expand host range, viruses must interact with unsusceptible host cell surfaces, which could be detrimental. As observed in this study, virions were inactivated without genome penetration. This may be advantageous to potential new hosts, culling the viral population from which an expanded host range mutant could emerge. When identified, altered host range mutations were recessive. Accordingly, isolation required populations generated in low-MOI environments. However, in laboratory settings, viral propagation includes high-MOI conditions. Typically, infected cultures incubate until all cells produce progeny. Thus, coinfections dominate later replication cycles, masking recessive host range expansion phenotypes. This may have impacted similar studies with other viruses. Last, structural and genetic data could be used to predict site-directed mutant phenotypes, which may broaden the classic antireceptor definition to include interfaces between capsid complexes.


Assuntos
Proteínas do Capsídeo/metabolismo , Escherichia coli/virologia , Genes Recessivos , Interações Hospedeiro-Patógeno/genética , Mutação , Vírion , Montagem de Vírus , Sequência de Aminoácidos , Bacteriófago phi X 174 , Proteínas do Capsídeo/genética , Especificidade de Hospedeiro , Microvirus/classificação , Microvirus/genética , Fenótipo
5.
Proc Natl Acad Sci U S A ; 114(52): 13708-13713, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29229840

RESUMO

Unlike tailed bacteriophages, which use a preformed tail for transporting their genomes into a host bacterium, the ssDNA bacteriophage ΦX174 is tailless. Using cryo-electron microscopy and time-resolved small-angle X-ray scattering, we show that lipopolysaccharides (LPS) form bilayers that interact with ΦX174 at an icosahedral fivefold vertex and induce single-stranded (ss) DNA genome ejection. The structures of ΦX174 complexed with LPS have been determined for the pre- and post-ssDNA ejection states. The ejection is initiated by the loss of the G protein spike that encounters the LPS, followed by conformational changes of two polypeptide loops on the major capsid F proteins. One of these loops mediates viral attachment, and the other participates in making the fivefold channel at the vertex contacting the LPS.


Assuntos
Bacteriófago phi X 174 , Proteínas do Capsídeo , Parede Celular/virologia , Escherichia coli/virologia , Internalização do Vírus , Bacteriófago phi X 174/química , Bacteriófago phi X 174/metabolismo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Lipopolissacarídeos/química , Lipopolissacarídeos/metabolismo
6.
J Virol ; 91(24)2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-28978706

RESUMO

Two scaffolding proteins orchestrate ϕX174 morphogenesis. The internal scaffolding protein B mediates the formation of pentameric assembly intermediates, whereas the external scaffolding protein D organizes 12 of these intermediates into procapsids. Aromatic amino acid side chains mediate most coat-internal scaffolding protein interactions. One residue in the internal scaffolding protein and three in the coat protein constitute the core of the B protein binding cleft. The three coat gene codons were randomized separately to ascertain the chemical requirements of the encoded amino acids and the morphogenetic consequences of mutation. The resulting mutants exhibited a wide range of recessive phenotypes, which could generally be explained within a structural context. Mutants with phenylalanine, tyrosine, and methionine substitutions were phenotypically indistinguishable from the wild type. However, tryptophan substitutions were detrimental at two sites. Charged residues were poorly tolerated, conferring extreme temperature-sensitive and lethal phenotypes. Eighteen lethal and conditional lethal mutants were genetically and biochemically characterized. The primary defect associated with the missense substitutions ranged from inefficient internal scaffolding protein B binding to faulty procapsid elongation reactions mediated by external scaffolding protein D. Elevating B protein concentrations above wild-type levels via exogenous, cloned-gene expression compensated for inefficient B protein binding, as did suppressing mutations within gene B. Similarly, elevating D protein concentrations above wild-type levels or compensatory mutations within gene D suppressed faulty elongation. Some of the parental mutations were pleiotropic, affecting multiple morphogenetic reactions. This progressively reduced the flux of intermediates through the pathway. Accordingly, multiple mechanisms, which may be unrelated, could restore viability.IMPORTANCE Genetic analyses have been instrumental in deciphering the temporal events of many biochemical pathways. However, pleiotropic effects can complicate analyses. Vis-à-vis virion morphogenesis, an improper protein-protein interaction within an early assembly intermediate can influence the efficiency of all subsequent reactions. Consequently, the flux of assembly intermediates cumulatively decreases as the pathway progresses. During morphogenesis, ϕX174 coat protein participates in at least four well-defined reactions, each one characterized by an interaction with a scaffolding or structural protein. In this study, genetic analyses, biochemical characterizations, and physiological assays, i.e., elevating the protein levels with which the coat protein interacts, were used to elucidate pleiotropic effects that may alter the flux of intermediates through a morphogenetic pathway.


Assuntos
Bacteriófago phi X 174/fisiologia , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Mutação , Montagem de Vírus , Substituição de Aminoácidos , Bacteriófago phi X 174/genética , Proteínas do Capsídeo/química , Modelos Moleculares , Mutação de Sentido Incorreto , Fenótipo , Ligação Proteica , Conformação Proteica , Proteínas Estruturais Virais/genética , Proteínas Estruturais Virais/metabolismo
7.
J Virol ; 90(17): 7956-66, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27356899

RESUMO

UNLABELLED: Although the ϕX174 H protein is monomeric during procapsid morphogenesis, 10 proteins oligomerize to form a DNA translocating conduit (H-tube) for penetration. However, the timing and location of H-tube formation are unknown. The H-tube's highly repetitive primary and quaternary structures made it amenable to a genetic analysis using in-frame insertions and deletions. Length-altered proteins were characterized for the ability to perform the protein's three known functions: participation in particle assembly, genome translocation, and stimulation of viral protein synthesis. Insertion mutants were viable. Theoretically, these proteins would produce an assembled tube exceeding the capsid's internal diameter, suggesting that virions do not contain a fully assembled tube. Lengthened proteins were also used to test the biological significance of the crystal structure. Particles containing H proteins of two different lengths were significantly less infectious than both parents, indicating an inability to pilot DNA. Shortened H proteins were not fully functional. Although they could still stimulate viral protein synthesis, they either were not incorporated into virions or, if incorporated, failed to pilot the genome. Mutant proteins that failed to incorporate contained deletions within an 85-amino-acid segment, suggesting the existence of an incorporation domain. The revertants of shortened H protein mutants fell into two classes. The first class duplicated sequences neighboring the deletion, restoring wild-type length but not wild-type sequence. The second class suppressed an incorporation defect, allowing the use of the shortened protein. IMPORTANCE: The H-tube crystal structure represents the first high-resolution structure of a virally encoded DNA-translocating conduit. It has similarities with other viral proteins through which DNA must travel, such as the α-helical barrel domains of P22 portal proteins and T7 proteins that form tail tube extensions during infection. Thus, the H protein serves as a paradigm for the assembly and function of long α-helical supramolecular structures and nanotubes. Highly repetitive in primary and quaternary structure, they are amenable to structure-function analyses using in-frame insertions and deletions as presented herein.


Assuntos
Bacteriófago phi X 174/fisiologia , Análise Mutacional de DNA , Multimerização Proteica , Proteínas Virais/genética , Proteínas Virais/metabolismo , Bacteriófago phi X 174/genética , Cristalografia por Raios X , Viabilidade Microbiana , Modelos Moleculares , Mutagênese Insercional , Biossíntese de Proteínas , Conformação Proteica , Deleção de Sequência , Proteínas Virais/química , Montagem de Vírus
8.
Mol Biol Evol ; 31(6): 1421-31, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24600050

RESUMO

Single-stranded DNA(ssDNA) viral life cycles must balance double-stranded DNA (dsDNA) and ssDNA biosynthesis. Previously published in vitro results suggest that microvirus C and host cell SSB proteins play antagonistic roles to achieve this balance. To investigate this in vivo, microvirus DNA replication was characterized in cells expressing cloned C or ssb genes, which would presumably alter the C:SSB protein ratios. Representatives of each microvirus clade (φX174, G4, and α3) were used in these studies. α3 DNA replication was significantly more complex. Results suggested that the recognized α3 C gene (C(S): small) is one of two C genes. A larger 5' extended gene could be translated from an upstream GTG start codon (C(B): big). Wild-type α3 acquired resistance to elevated SSB levels by mutations that exclusively frameshifted the C(B) reading frame, whereas mutations in the origin of replication conferred resistance to elevated C protein levels. Expression of either the cloned C(B) or C(S) gene complemented am(C) mutants, demonstrating functional redundancy. When the C(S) start codon was eliminated, strains were only viable if an additional amber mutation was placed in gene C and propagated in an informational suppressing host. Thus, C(B) protein likely reaches toxic levels in the absence of C(S) translation. This phenomenon may have driven the evolution of the C(S) gene within the larger C(B) gene and could constitute a unique mechanism of regulation. Furthermore, cross-complementation data suggested that interactions between the α3 C and other viral proteins have evolved enough specificity to biochemically isolate its DNA replication from G4 and φX174.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Microvirus/crescimento & desenvolvimento , Microvirus/genética , Proteínas Virais/metabolismo , Replicação do DNA , DNA de Cadeia Simples/metabolismo , DNA Viral/metabolismo , Escherichia coli/virologia , Evolução Molecular , Genes Virais , Microvirus/classificação , Mutação , Filogenia , Proteínas Virais/genética
9.
Nature ; 505(7483): 432-5, 2014 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-24336205

RESUMO

Prokaryotic viruses have evolved various mechanisms to transport their genomes across bacterial cell walls. Many bacteriophages use a tail to perform this function, whereas tail-less phages rely on host organelles. However, the tail-less, icosahedral, single-stranded DNA ΦX174-like coliphages do not fall into these well-defined infection processes. For these phages, DNA delivery requires a DNA pilot protein. Here we show that the ΦX174 pilot protein H oligomerizes to form a tube whose function is most probably to deliver the DNA genome across the host's periplasmic space to the cytoplasm. The 2.4 Å resolution crystal structure of the in vitro assembled H protein's central domain consists of a 170 Å-long α-helical barrel. The tube is constructed of ten α-helices with their amino termini arrayed in a right-handed super-helical coiled-coil and their carboxy termini arrayed in a left-handed super-helical coiled-coil. Genetic and biochemical studies demonstrate that the tube is essential for infectivity but does not affect in vivo virus assembly. Cryo-electron tomograms show that tubes span the periplasmic space and are present while the genome is being delivered into the host cell's cytoplasm. Both ends of the H protein contain transmembrane domains, which anchor the assembled tubes into the inner and outer cell membranes. The central channel of the H-protein tube is lined with amide and guanidinium side chains. This may be a general property of viral DNA conduits and is likely to be critical for efficient genome translocation into the host.


Assuntos
Bacteriófago phi X 174/química , Bacteriófago phi X 174/metabolismo , DNA Viral/metabolismo , Escherichia coli/virologia , Montagem de Vírus , Bacteriófago phi X 174/ultraestrutura , Transporte Biológico , Microscopia Crioeletrônica , Cristalografia por Raios X , Citoplasma/metabolismo , Citoplasma/ultraestrutura , Citoplasma/virologia , DNA Viral/ultraestrutura , Escherichia coli/citologia , Escherichia coli/ultraestrutura , Genoma Viral , Modelos Moleculares , Periplasma/metabolismo , Periplasma/ultraestrutura , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Virais/química , Proteínas Virais/metabolismo , Proteínas Virais/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...