Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 207, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36604529

RESUMO

This paper describes the fabrication of cicada-wing-inspired antimicrobial surfaces using Glancing Angle Deposition (GLAD). From the study of an annual cicada (Neotibicen Canicularis, also known as dog-day cicada) in North America, it is found that the cicada wing surfaces are composed of unique three-dimensional (3D) nanofeature arrays, which grant them extraordinary properties including antimicrobial (antifouling) and antireflective. However, the morphology of these 3D nanostructures imposes challenges in artificially synthesizing the structures by utilizing and scaling up the template area from nature. From the perspective of circumventing the difficulties of creating 3D nanofeature arrays with top-down nanofabrication techniques, this paper introduces a nanofabrication process that combines bottom-up steps: self-assembled nanospheres are used as the bases of the features, while sub-100 nm pillars are grown on top of the bases by GLAD. Scanning electron micrographs show the resemblance of the synthesized cicada wing mimicry samples to the actual cicada wings, both quantitatively and qualitatively. The synthetic mimicry samples are hydrophobic with a water contact angle of 125˚. Finally, the antimicrobial properties of the mimicries are validated by showing flat growth curves of Escherichia coli (E. coli) and by direct observation under scanning electron microscopy (SEM). The process is potentially suitable for large-area antimicrobial applications in food and biomedical industries.


Assuntos
Anti-Infecciosos , Hemípteros , Nanoestruturas , Animais , Anti-Infecciosos/farmacologia , Escherichia coli , Hemípteros/anatomia & histologia , Interações Hidrofóbicas e Hidrofílicas , Nanoestruturas/química , Propriedades de Superfície
2.
J Nanobiotechnology ; 19(1): 458, 2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34963490

RESUMO

Bio-inspired Topographically Mediated Surfaces (TMSs) based on high aspect ratio nanostructures have recently been attracting significant attention due to their pronounced antimicrobial properties by mechanically disrupting cellular processes. However, scalability of such surfaces is often greatly limited, as most of them rely on micro/nanoscale fabrication techniques. In this report, a cost-effective, scalable, and versatile approach of utilizing diamond nanotechnology for producing TMSs, and using them for limiting the spread of emerging infectious diseases, is introduced. Specifically, diamond-based nanostructured coatings are synthesized in a single-step fabrication process with a densely packed, needle- or spike-like morphology. The antimicrobial proprieties of the diamond nanospike surface are qualitatively and quantitatively analyzed and compared to other surfaces including copper, silicon, and even other diamond surfaces without the nanostructuring. This surface is found to have superior biocidal activity, which is confirmed via scanning electron microscopy images showing definite and widespread destruction of E. coli cells on the diamond nanospike surface. Consistent antimicrobial behavior is also observed on a sample prepared seven years prior to testing date.


Assuntos
Antibacterianos/química , Materiais Revestidos Biocompatíveis/química , Diamante/química , Nanoestruturas/química , Antibacterianos/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Cobre/química , Cobre/farmacologia , Diamante/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Nanoestruturas/ultraestrutura , Nanotecnologia , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...