Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 6(35): eaaz4796, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32923619

RESUMO

Early embryonic arrest is a challenge for in vitro fertilization (IVF). No genetic factors were previously revealed in the sperm-derived arrest of embryonic development. Here, we reported two infertile brothers presenting normal in conventional semen analysis, but both couples had no embryos for transfer after several IVF and intracytoplasmic sperm injection (ICSI). Whole-exome sequencing identified a homozygous missense mutation of ACTL7A in both brothers. This mutation is deleterious and causes sperm acrosomal ultrastructural defects. The Actl7a knock-in mouse model was generated, and male mutated mice showed sperm acrosomal defects, which were completely consistent with the observations in patients. Furthermore, the sperm from ACTL7A/Actl7a-mutated men and mice showed reduced expression and abnormal localization of PLCζ as a potential cause of embryonic arrest and failure of fertilization. Artificial oocyte activation could successfully overcome the Actl7a-mutated sperm-derived infertility, which is meaningful in the future practice of IVF/ICSI for the ACTL7A-associated male infertility.

2.
Asian J Androl ; 22(6): 590-601, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32270769

RESUMO

The mammalian epididymis not only plays a fundamental role in the maturation of spermatozoa, but also provides protection against various stressors. The foremost among these is the threat posed by oxidative stress, which arises from an imbalance in reactive oxygen species and can elicit damage to cellular lipids, proteins, and nucleic acids. In mice, the risk of oxidative damage to spermatozoa is mitigated through the expression and secretion of glutathione peroxidase 5 (GPX5) as a major luminal scavenger in the proximal caput epididymidal segment. Accordingly, the loss of GPX5-mediated protection leads to impaired DNA integrity in the spermatozoa of aged Gpx5-/- mice. To explore the underlying mechanism, we have conducted transcriptomic analysis of caput epididymidal epithelial cells from aged (13 months old) Gpx5-/- mice. This analysis revealed the dysregulation of several thousand epididymal mRNA transcripts, including the downregulation of a subgroup of piRNA pathway genes, in aged Gpx5-/- mice. In agreement with these findings, we also observed the loss of piRNAs, which potentially bind to the P-element-induced wimpy testis (PIWI)-like proteins PIWIL1 and PIWIL2. The absence of these piRNAs was correlated with the elevated mRNA levels of their putative gene targets in the caput epididymidis of Gpx5-/- mice. Importantly, the oxidative stress response genes tend to have more targeting piRNAs, and many of them were among the top increased genes upon the loss of GPX5. Taken together, our findings suggest the existence of a previously uncharacterized somatic piRNA pathway in the mammalian epididymis and its possible involvement in the aging and oxidative stress-mediated responses.


Assuntos
Epididimo/metabolismo , Glutationa Peroxidase/fisiologia , RNA Interferente Pequeno/metabolismo , Envelhecimento/metabolismo , Animais , Regulação para Baixo , Epididimo/enzimologia , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Glutationa Peroxidase/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Reação em Cadeia da Polimerase Via Transcriptase Reversa
3.
J Mol Cell Biol ; 10(6): 503-514, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29659949

RESUMO

Infertility is a severe public health problem worldwide that prevails up to 15% in reproductive-age couples, and male infertility accounts for half of total infertility. Studies on genetically modified animal models have identified lots of genes involved in the pathogenesis of male infertility. The underlying causes, however, remain largely unclear. In this study, we provide evidence that EMC10, one subunit of endoplasmic reticulum (ER) membrane protein complex (EMC), is required for male fertility. EMC10 is significantly decreased in spermatozoa from patients with asthenozoospermia and positively associated with human sperm motility. Male mice lacking Emc10 gene are completely sterile. Emc10-null spermatozoa exhibit multiple defects including abnormal morphology, decreased motility, impaired capacitation, and impotency of acrosome reaction, thereby which are incapable of fertilizing intact or ZP-free oocytes. However, intracytoplasmic sperm injection could rescue this defect caused by EMC10 deletion. Mechanistically, EMC10 deficiency leads to inactivation of Na/K-ATPase, in turn giving rise to an increased level of intracellular Na+ in spermatozoa, which contributes to decreased sperm motility and abnormal morphology. Other mechanistic investigations demonstrate that the absence of EMC10 results in a reduction of HCO3- entry and subsequent decreases of both cAMP-dependent protein kinase A substrate phosphorylation and protein tyrosine phosphorylation. These data demonstrate that EMC10 is indispensable to male fertility via maintaining sperm ion balance of Na+ and HCO3-, and also suggest that EMC10 is a promising biomarker for male fertility and a potential pharmaceutical target to treat male infertility.


Assuntos
Fertilidade , Proteínas de Membrana/metabolismo , Proteínas/metabolismo , Motilidade dos Espermatozoides , Espermatozoides/metabolismo , Reação Acrossômica , Adulto , Animais , Deleção de Genes , Humanos , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Espermatozoides/citologia , Espermatozoides/patologia
4.
Biochim Biophys Acta Gen Subj ; 1862(3): 660-668, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29247744

RESUMO

BACKGROUND: We previously cloned the Ssp411 gene. We found that the Ssp411 protein is predominantly expressed in elongated spermatids in the rat testis in a stage-dependent manner. Although our findings strongly suggested that Ssp411 might play an important role in mammalian spermatogenesis, this hypothesis has not been studied. METHODS: We first used real-time PCR, Western blotting and immunohistochemistry to confirm that the expression pattern of Ssp411 in several murine tissues is similar to its expression pattern in corresponding rat tissues. To better understand the roles of Ssp411 in male reproduction in vivo, we identified and characterized an Ssp411 expression-disrupted murine strain (Ssp411PB/PB) that was generated by piggyBac (PB) transposon insertion. We studied Ssp411-interacting proteins using proteome microarray, co-IP and GST pull-down assay. RESULTS: Both Ssp411 mRNA and protein were detected exclusively in spermatids after step 9 during spermiogenesis in testis. Phenotypic analysis suggested that only Ssp411PB/PB males are sterile. These males have smaller testes, reduced sperm counts, decreased sperm motility and deformed spermatozoa. Microscopy analysis indicated that the manchette, a structurally reshaped sperm head, is aberrant in Ssp411PB/PB spermatids. The results of proteome microarray analysis and GST pull-down assays suggested that Ssp411 participates the ubiquitin-proteasome system by interacting with PSMC3. This has been reported to be manchette-associated and important for the head shaping of spermatids. CONCLUSIONS: Our study suggested that Ssp411 is required for spermiogenesis. It seems to play a role in sperm head shaping. The lack of Ssp411 causes sperm deformation and results in male infertility. GENERAL SIGNIFICANCE: Ssp411PB/PB mouse strain is an animal model of idiopathic oligoasthenoteratozoospermia (iOAT), and the gene may represent a therapeutic target for iOAT patients.


Assuntos
Astenozoospermia/genética , Cabeça do Espermatozoide/ultraestrutura , Espermatogênese/fisiologia , Teratozoospermia/genética , Animais , Astenozoospermia/fisiopatologia , Elementos de DNA Transponíveis , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Mutantes , Microtúbulos/patologia , Mutagênese Insercional , Especificidade de Órgãos , Complexo de Endopeptidases do Proteassoma/metabolismo , Mapeamento de Interação de Proteínas , Proteoma , RNA Mensageiro/biossíntese , Motilidade dos Espermatozoides , Espermátides/metabolismo , Espermatogênese/genética , Teratozoospermia/fisiopatologia , Testículo/metabolismo , Ubiquitina/metabolismo
5.
PLoS One ; 12(11): e0186727, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29095856

RESUMO

Cadmium is a major environmental toxicant that is released into the atmosphere, water and soil in the form of cadmium oxide, cadmium chloride, or cadmium sulfide via industrial activities, such as the manufacturing of batteries and pigments, metal smelting and refining and municipal waste incineration. In the present study, we investigated the effects of cadmium exposure on sperm quality parameters, fertilization capacity and early embryonic development. Our study showed that in vitro incubation of human or mouse sperms with cadmium for a long time (up to 24 hours) could significantly decreased sperm motility in a concentration- and time-dependent manner. Exposure to cadmium in the environment for a short term (30 min) did not affect sperm motility but significantly reduced in vitro fertilization rate. We also evaluated the effects of cadmium at concentrations of 0.625 µg/ml, and 1.25 µg/ml on early embryonic development in vitro and observed that the blastocyst formation rate dramatically decreased with increasing cadmium concentration. This finding emphasizes the hazardous effects of cadmium on sperm quality as well as on natural embryo development and raises greater concerns regarding cadmium pollution.


Assuntos
Cádmio/toxicidade , Desenvolvimento Embrionário/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Animais , Feminino , Humanos , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA
6.
Endocrinology ; 158(11): 3724-3737, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28645209

RESUMO

As an important nuclear hormone receptor, estrogen receptor α (ERα), which is encoded by the Esr1 gene, regulates the expression of hundreds of genes in a stimulus-specific, temporal, and tissue-specific fashion, mainly by binding to specific DNA sequences called estrogen response elements (EREs). As an important estrogen target tissue in males, the function of the efferent ductules relies on the presence of the ERα protein, but the underlying regulatory mechanisms are poorly illustrated. In this study, genome-wide ERα-binding sites in mouse efferent ductules were mapped by chromatin immunoprecipitation sequencing. In total, 12,105 peaks were identified, and a majority of them were located far from the annotated gene transcription start site. Motif analysis revealed that ∼80% of the ERα-binding peaks harbored at least one ERE, whereas androgen response element-like sequences were the most overrepresented motif in the peaks without any EREs. A number of candidate transcription factor motifs adjacent to the EREs were significantly enriched, including AP2 and GRE, implying the involvement of these putative adjacent factors in the global regulation of ERα target genes. Unexpectedly, more than 50% of the ERα-binding peaks in mouse efferent ductules overlapped with those binding peaks previously identified in mouse uterus, suggesting the conserved mechanism of ERα action in these two tissues. Cobinding of ERα target genes by androgen receptor was further confirmed for Slc9a3 gene, which was responsible for fluid resorption in the efferent ductules. Taken together, our study provides a useful reference set for future work aimed at exploring the mechanism of ERα action in physiological conditions.


Assuntos
Mapeamento Cromossômico , Epididimo/metabolismo , Receptor alfa de Estrogênio/metabolismo , Elementos de Resposta , Animais , Sítios de Ligação/genética , Imunoprecipitação da Cromatina , Estradiol/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Transcrição Gênica
7.
Mol Reprod Dev ; 84(3): 257-264, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28029195

RESUMO

The epididymis, which connects the testis to vas deferens, plays a crucial role regulating sperm maturation and fertilization. Here, a tamoxifen-inducible CreERT2 recombinase transgenic mouse was generated to study the function of genes in the caput epididymis using the Cre/LoxP system, which is driven by the 1.8-kb Lcn5 promoter (Lcn5-CreERT2 ). Both CRE recombinase and ERT2 mRNA were specifically expressed in the caput epididymis, beginning at postnatal Day 30 and increasing thereafter. Crossing these Lcn5-CreERT2 transgenic mice with Rosa26; mT/mG reporter mice, which express membrane-bound GFP (mGFP) only after CRE is active at its genetic locus, resulted in the presence of GFP only in the middle/distal caput epididymis after tamoxifen induction. Efficiency of the CRE recombinase production in the caput epididymis was dose- and time-dependent. These tamoxifen-inducible caput epididymis-specific CRE recombinase transgenic mice thus provides a simple approach to modulate epididymal principal cells in vivo, allowing for the genetic investigation of caput epididymis-specific gene functions during sperm maturation. 84: 257-264, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Deleção de Genes , Integrases , Proteínas Plasmáticas de Ligação ao Retinol , Tamoxifeno/farmacologia , Animais , Epididimo/metabolismo , Integrases/genética , Integrases/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Proteínas Plasmáticas de Ligação ao Retinol/genética , Proteínas Plasmáticas de Ligação ao Retinol/metabolismo
8.
Acta Biochim Biophys Sin (Shanghai) ; 48(6): 573-80, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27174873

RESUMO

Bisphenol A (BPA) is a synthetic estrogen-mimic chemical. It has been shown to affect many reproductive endpoints. However, the effect of BPA on the mature sperm and the mechanism of its action are not clear yet. Here, our in vitro studies indicated that BPA could accelerate sperm capacitation-associated protein tyrosine phosphorylation in time- and dose-dependent manners. In vivo, the adult male rats exposed to a high dose of BPA could result in a significant increase in sperm activity. Further investigation demonstrated that BPA could accelerate capacitation-associated protein tyrosine phosphorylation even if sperm were incubated in medium devoid of BSA, HCO3 (-), and Ca(2+) However, this action of BPA stimulation could be blocked by H89, a highly selective blocker of protein kinase A (PKA), but not by KH7, a specific inhibitor of adenylyl cyclase. These data suggest that BPA may activate PKA to affect sperm functions and male fertility.


Assuntos
Compostos Benzidrílicos/toxicidade , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Fenóis/toxicidade , Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo , Animais , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Ativação Enzimática/efeitos dos fármacos , Feminino , Fertilidade/efeitos dos fármacos , Fertilização in vitro/efeitos dos fármacos , Isoquinolinas/farmacologia , Masculino , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Ratos , Ratos Sprague-Dawley , Capacitação Espermática/efeitos dos fármacos , Capacitação Espermática/fisiologia , Sulfonamidas/farmacologia , Tirosina/metabolismo
9.
Reproduction ; 150(4): 257-68, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26175429

RESUMO

Cholecystokinin (CCK), a peptide hormone and a neurotransmitter, was detected in mature sperm two decades ago. However, the exact role of CCK and the types of CCK receptors (now termed CCK1 and CCK2) in sperm have not been identified. Here, we find that CCK1 and CCK2 receptors are immunolocalized to the acrosomal region of mature sperm. The antagonist of CCK1 or CCK2 receptor strongly activated the soluble adenylyl cyclase/cAMP/protein kinase A signaling pathway that drives sperm capacitation-associated protein tyrosine phosphorylation in dose- and time-dependent manners. But these actions of stimulation were abolished when sperm were incubated in the medium in the absence of HCO3-. Further investigation demonstrated that the inhibitor of CCK1 or CCK2 receptor could accelerate the uptake of HCO3- and significantly elevate the intracellular pH of sperm. Interestingly, the synthetic octapeptide of CCK (CCK8) showed the same action and mechanism as antagonists of CCK receptors. Moreover, CCK8 and the antagonist of CCK1 or CCK2 receptor were also able to accelerate human sperm capacitation-associated protein tyrosine phosphorylation by stimulating the influx of HCO3-. Thus, the present results suggest that CCK and its receptors may regulate sperm capacitation-associated protein tyrosine phosphorylation by modulating the uptake of HCO3-.


Assuntos
Bicarbonatos/metabolismo , Fosforilação/efeitos dos fármacos , Receptores da Colecistocinina/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo , Tirosina/metabolismo , Acrossomo/efeitos dos fármacos , Acrossomo/metabolismo , Animais , Quimiocinas CC/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptor de Colecistocinina B/efeitos dos fármacos , Sincalida/metabolismo , Sincalida/farmacologia , Capacitação Espermática/efeitos dos fármacos
10.
Acta Biochim Biophys Sin (Shanghai) ; 47(6): 404-13, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25910575

RESUMO

Ca(2+) signaling is pivotal for sperm maturation, including the processes of motility, capacitation, and the acrosome reaction. As a Ca(2+) conductor, transient receptor potential-canonical 3 (TRPC3) plays an important role in somatic cells. However, the function of TRPC3 in sperm is not well understood. Here, a pharmacological approach was used to investigate the role and mechanism of TPRC3 in sperm function. The TRPC3 antagonist Pyr3 could inhibit sperm motility and accelerate capacitation-associated protein tyrosine phosphorylation in a time- and dose-dependent manner, regardless of the presence or absence of Ca(2+) in the incubation medium. Further investigation revealed that sperm [Ca(2+)]i fell immediately once Pyr3 was added to Ca(2+)-free medium, and then gradually increased and returned to baseline levels. Moreover, the [Ca(2+)]i levels markedly elevated when sperm were incubated for 30 min in the presence of Pyr3; this change was subsequently accompanied by a significant reduction in sperm mitochondrial membrane potential. This study suggested that TRPC3 can modulate sperm function via mobilization of sperm [Ca(2+)]i.


Assuntos
Cálcio/metabolismo , Capacitação Espermática/fisiologia , Motilidade dos Espermatozoides/fisiologia , Canais de Cátion TRPC/fisiologia , Tirosina/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Canais de Cátion TRPC/antagonistas & inibidores
11.
Asian J Androl ; 17(2): 292-7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25475668

RESUMO

Despite the fact that the phenomenon of capacitation was discovered over half century ago and much progress has been made in identifying sperm events involved in capacitation, few specific molecules of epididymal origin have been identified as being directly involved in this process in vivo . Previously, our group cloned and characterized a carboxyl esterase gene Ces5a in the rat epididymis. The CES5A protein is mainly expressed in the corpus and cauda epididymidis and secreted into the corresponding lumens. Here, we report the function of CES5A in sperm maturation. By local injection of Lentivirus -mediated siRNA in the CES5A -expressing region of the rat epididymis, Ces5a -knockdown animal models were created. These animals exhibited an inhibited sperm capacitation and a reduction in male fertility. These results suggest that CES5A plays an important role in sperm maturation and male fertility.


Assuntos
Carboxilesterase/fisiologia , Epididimo/enzimologia , Fertilidade/fisiologia , Capacitação Espermática/fisiologia , Animais , Carboxilesterase/deficiência , Carboxilesterase/genética , Epididimo/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Masculino , Modelos Animais , RNA Interferente Pequeno/farmacologia , Ratos , Ratos Sprague-Dawley , Motilidade dos Espermatozoides/fisiologia
12.
Int J Mol Sci ; 14(11): 23188-202, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24284406

RESUMO

The α-(1,2) fucosyltransferases (Fut1 and Fut2) and α-(1,3) fucosyltransferases (Fut4, Fut9) are responsible for the synthesis of Lewis X (LeX) and Lewis Y (LeY) conjugated to glycoproteins. We recently reported that these fucosyltransferases were differentially expressed in the reproductive tract of male mouse. Here, we studied the effect of androgen on fucosyltransferase expression through the use of mouse castration models. We found that Fut1 mRNA and Fut4 mRNA were upregulated, while Fut2 mRNA and Fut9 mRNA were downregulated by androgen in the caput epididymis. However, in the vas deferens and prostate, only Fut4 mRNA and Fut2 mRNA were respectively upregulated following exposure to androgen. In the seminal vesicle, all fucosyltransferases, with the exception of Fut9, were upregulated. We identified the androgen receptor binding sites (ARBSs) of Fut2, Fut4 and Fut9 in the caput epididymis. Luciferase assay for these ARBSs is able to provide an indication as to why Fut4 and Fut9 are differently expressed and regulated by androgen, although they catalyze the same α-(1,3) fucose linkage. Our study showed that androgen could differentially regulate the expression of these fucosyltransferases and provided an insight into the characteristic distribution of each fucosyltransferase responsible for LeX/LeY biosynthesis in the male reproductive tract.


Assuntos
Androgênios/genética , Fucosiltransferases/biossíntese , Androgênios/metabolismo , Animais , Sítios de Ligação , Epididimo/metabolismo , Fucosiltransferases/genética , Fucosiltransferases/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos , Ligação Proteica , RNA Mensageiro/biossíntese , Reprodução/genética , Galactosídeo 2-alfa-L-Fucosiltransferase
13.
PLoS One ; 8(6): e66634, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23818952

RESUMO

Recent studies have identified Ca(2+) stores in sperm cells; however, it is not clear whether these Ca(2+) stores are functional and how they are mobilized. Here, in vitro and in vivo, we determined that tripeptidyl peptidase II antagonists strongly activated the cAMP/PKA signaling pathway that drives sperm capacitation-associated protein tyrosine phosphorylation. We demonstrated that in the absence of Ca(2+), TPIII antagonists elevated the intracellular Ca(2+) levels in sperm, resulting in a marked improvement in sperm movement, capacitation, acrosome reaction, and the in vitro fertilizing ability. This antagonist-induced release of intracellular Ca(2+) could be blocked by the inhibitors of ryanodine receptors (RyRs) which are the main intracellular Ca(2+) channels responsible for releasing stored Ca(2+). Consistent with these results, indirect immunofluorescence assay using anti-RyR antibodies further validated the presence of RyR3 in the acrosomal region of mature sperm. Thus, TPPII can regulate sperm maturation by modulating intracellular Ca(2+) stores via the type 3 RyR.


Assuntos
Aminopeptidases/metabolismo , Cálcio/metabolismo , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Serina Endopeptidases/metabolismo , Espermatozoides/fisiologia , Reação Acrossômica/fisiologia , Clorometilcetonas de Aminoácidos/farmacologia , Aminopeptidases/antagonistas & inibidores , Animais , Western Blotting , Células Cultivadas , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dantroleno/farmacologia , Dipeptidil Peptidases e Tripeptidil Peptidases/antagonistas & inibidores , Indóis/farmacologia , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Relaxantes Musculares Centrais/farmacologia , Fosforilação/efeitos dos fármacos , Rianodina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Capacitação Espermática/fisiologia , Espermatozoides/citologia
14.
Small ; 7(20): 2935-44, 2011 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-21901827

RESUMO

The effective modulation of pore sizes for nanoporous silica nanoparticles still remains a great challenge not satisfactorily solved. In this paper, the pore sizes in the shell of hollow silica nanocapsules are well-tuned by a reversible Si-O bond breakage and reformation process under mildly alkaline conditions (e.g., Na(2) CO(3) solution). The pores in nanosized hollow silica capsules can be modulated from 3.2 nm to larger than 10 nm by a novel, surfactant-directing alkaline-etching (SDAE) strategy. Interestingly, the pores can be fully filled through the regrowth of the dissoluted silicates by bonding to silanols (Si-OH) on the wall surface to generate the nonporous hollow silica nanocapsules. The large-sized pore hollow silica nanocapsules exhibit excellent siRNA-loading capabilities and intracellular transfection efficiencies in vitro. In addition, the large pores in the shell of hollow silica nanocapsules are explored as channels for collecting superparamagnetic, small-sized Fe(3) O(4) nanoparticles as contrast agents for magnetic resonance imaging, initiating a special approach towards pore-size modulation and multifunctionalization of silica-based nanostructural materials for nanobiomedical applications.


Assuntos
Nanocápsulas/química , Nanopartículas/química , Nanotecnologia/métodos , RNA Interferente Pequeno/administração & dosagem , Dióxido de Silício/química , Meios de Contraste/química , Compostos Férricos/química , Imageamento por Ressonância Magnética/instrumentação , Microscopia Eletrônica de Transmissão , Nanocápsulas/ultraestrutura , Nanopartículas/ultraestrutura , RNA Interferente Pequeno/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...