Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 366: 121587, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38981272

RESUMO

Nutrient loads in lakes are spatially heterogeneous, but current spatial analysis method are mainly zonal, making them subjective and uncertain. This study proposes a high-resolution model for assessing spatial differences in nutrient loads based on the lattice Boltzmann method. The model was applied to Dongping Lake in China. Firstly, the contribution rates of four influencing factors, including water transfer, inflow, wind, and internal load, were calculated at different locations in the lake. Then, their proportionate contributions during different intervals to the whole lake area were calculated. Finally, the cumulative load could be calculated for any location within the lake. The validation showed that the model simulated hydrodynamics and water quality well, with relative errors between the simulated and measured water quality data smaller than 0.45. Wind increased the nutrient loads in most parts of the lake. The loads tended to accumulate in the east central area where high-frequency circulation patterns were present. Overall, the proposed water quality model based on the lattice Boltzmann method was able to simulate seven indexes. Therefore, this model represents a useful tool for thoroughly assessing nutrient load distributions in large shallow lakes and could help refine lake restoration management.

2.
Mar Environ Res ; 168: 105294, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33770674

RESUMO

As an indispensable part of the marine ecosystem, phytoplankton are important prey for zooplankton and various marine animals with important commercial value. The influence of seawater warming and eutrophication on phytoplankton communities is well known, but few studies have explained the effects of the interaction between temperature and nutrients on marine phytoplankton. Through meta-analysis and meta-regression, the phytoplankton responses to the effects of nutrient addition and seawater warming were evaluated in this study. Nitrogen (N) addition led to an increase in phytoplankton biomass, while phosphorus (P) had no significant effect on phytoplankton biomass. However, this result may be biased by the uneven distribution of the research area. N limitation is widespread in the areas where these collected studies were conducted, including many parts of North and South Atlantic and West Pacific Oceans. The key limiting nutrient in other areas lacking corresponding experiments, however, remain unclear. The effect of seawater warming was not significant, which indicates the uncertainty about the effect of temperature on phytoplankton. The results of ANOVA show that nutrient addition and seawater warming had similar effects in various marine habitats (coastal regions, estuaries and open seas), while salinity could have caused the difference in the N effects among the three habitats. Furthermore, our results showed that the impact of temperature depends on nutrient conditions, especially N status, which has rarely been considered before. This result demonstrated the importance of evaluating nutrient limitation patterns when studying climate warming. The impact of rising temperatures may need to be reevaluated because N limitation is common.


Assuntos
Ecossistema , Fitoplâncton , Animais , Biomassa , Nutrientes , Oceanos e Mares , Oceano Pacífico , Água do Mar , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...