Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Arch Esp Urol ; 58(1): 25-41; discussion 41-2, 2005.
Artigo em Espanhol | MEDLINE | ID: mdl-15801647

RESUMO

UNLABELLED: To perform a historical introduction and a review of the mathematical model, emphasizing that our mathematical model may be the solution to the viscoelastic model. It is evident that the same experiment has been repeated over half a century, with similar results in all cases. We also show one of the projects we are working on: the electro-vesicogram for the evaluation of the filling phase, and Doppler uroflowmetry for the study of the voiding phase. METHODS: We have chosen and studied in depth the results Dr. Virseda presents in his thesis of one of the experiments performed in relation to the viscoelastic model. After applying analytical methods we reach a differential equation we suppose defines detrusor behaviour, as it has been explained by the viscoelastic model. The solution of this equation by means of the Laplace's transform enables to obtain the values of the incognitas set by urodynamics. Besides, we analyzed the behaviour of solutions' stability using a matricial method following the Lyapunov theory. The former may solve the incognitas for the voiding phase. We used urethral Doppler with simultaneous uroflowmetry to obtain the data equations demanded; this is what we named "Doppler uroflowmetry". The filling phase was studied by superficial electromiography. We named it "electrovesicogram". We attach images for both Doppler wave and electrovesicogram. They both are the projects we are working on. RESULTS: Currently we can only explain the methodology we are following. Indeed, this article is the first of a series in which we aim to explain the methodology we are following in detail: Doppler wave capture; mounting process photogram by photogram, and vectorization and cleaning of the wave, either Doppler or flow waves; treatment in autocad to obtain the vector; and management of the vector with the matalab software, which gives us the results we are looking for. CONCLUSIONS: It is intuitive to deduct the usefulness of these methods as not invasive techniques in the urodynamic diagnosis. We have our illusions in these projects which open a window to the future.


Assuntos
Modelos Teóricos , Urodinâmica , Biofísica/história , Biofísica/estatística & dados numéricos , História do Século XVII , História do Século XVIII , História do Século XIX , História do Século XX , Fluxometria por Laser-Doppler/história , Urologia/história , Urologia/estatística & dados numéricos
2.
Arch. esp. urol. (Ed. impr.) ; 58(1): 25-42, ene.-feb. 2005. ilus
Artigo em Es | IBECS | ID: ibc-038498

RESUMO

OBJETIVO: Hacer una introducción histórica y una revisión del modelo matemático en la que se destaca fundamentalmente que nuestro modelo matemático puede ser la solución del modelo viscoelástico. Es evidente que durante medio siglo se ha estado repitiendo el mismo experimento, y en todas las ocasiones con resultados similares. También exponemos uno de los proyectos en los trabajamos: el electrovesicograma, para la exploración de la fase de llenado y la uroflujometría doppler para el estudio de la fase miccional. MÉTODOS: Basándonos en los resultados de uno de los experimentos realizados en relación con el modelo viscoelástico hemos elegido y estudiado en profundidad los resultados que el Dr. Virseda, presenta en su tesis. Y tras aplicar métodos analíticos, llegamos a una ecuación diferencial que suponemos define el comportamiento del detrusor según nos ha estado diciendo que lo hace el modelo viscoelástico. La solución de esta ecuación mediante la transformada de Laplace, nos permite obtener los valores de las incógnitas que la urodinámica plantea. Por otra parte, mediante el método matricial, analizamos el comportamiento de la estabilidad de las soluciones, según la teoria de Lyapunov. Lo anterior puede resolver las incógnitas de la fase miccional. Para obtener los datos que las ecuaciones nos demandan, utilizamos el doppler uretral, simultaneandolo con la flujometría, en lo que hemos dado en llamar la "Flujometría doppler". La fase de llenado la estudiamos mediante métodos de electromiografía superficial. El "Electrovesicograma", como lo llamamos nosotros. Adjuntamos imágenes tanto de la onda doppler como de la del electrovesicograma. Ambos son proyectos en los que estamos trabajando en la actualidad. RESULTADOS: De momento sólo podemos explicar la metodología que estamos siguiendo. De hecho este es el primero de una serie de artículos en los que nos proponemos detallar la metodología que seguimos: la captura de la onda doppler, su montaje fotograma a fotograma y la vectorización y limpieza de la onda, doppler y de flujo. Su tratamiento en autocad, para obtener el vector y el manejo del vector con el programa matalab, que nos da los resultados buscados. CONCLUSIONES: Es intuitivo deducir la utilidad de estos métodos, como técnicas no invasivas en el diagnóstico urodinámico. Tenemos puestas nuestras ilusiones en estos proyectos que no son otra cosa que abrir una puerta al futuro (AU)


To perform a historical introduction and a review of the mathematical model, emphasizing that our mathematical model may be the solution to the viscoelastic model. It is evident that the same experiment has been repeated over half a century, with similar results in all cases. We also show one of the projects we are working on: the electro-vesicogram for the evaluation of the filling phase, and Doppler uroflowmetry for the study of the voiding phase. METHODS: We have chosen and studied in depth the results Dr. Virseda presents in his thesis of one of the experiments performed in relation to the viscoelastic model. After applying analytical methods we reach a differential equation we suppose defines detrusor behaviour, as it has been explained by the viscoelastic model. The solution of this equation by means of the Laplace'S transform enables to obtain the values of the incognitas set by urodynamics. Besides, we analyzed the behaviour of solutions' stability using a matricial method following the Lyapunov theory. The former may solve the incognitas for the voiding phase. We used urethral Doppler with simultaneous uroflowmetry to obtain the data equations demanded; this is what we named "Doppler uroflowmetry". The filling phase was studied by superficial electromiography. We named it "electrovesicogram". We attach images for both doppler wave and electrovesicogram. They both are the projects we are working on. RESULTS: Currently we can only explain the methodology we are following. Indeed, this article is the first of a series in which we aim to explain the methodology we are following in detail: Doppler wave capture; mounting process photogram by photogram, and vectorization and cleaning of the wave, either Doppler or flow waves; treatment in autocad to obtain the vector; and management of the vector with the matalab software, which gives us the results we are looking for. CONCLUSIONS: It is intuitive to deduct the usefulness of these methods as not invasive techniques in the urodynamic diagnosis. We have our illusions in these projects which open a window to the future (AU)


Assuntos
História do Século XVII , História do Século XVIII , História do Século XIX , História do Século XX , Modelos Teóricos , Urodinâmica , Biofísica/história , Biofísica/estatística & dados numéricos , Fluxometria por Laser-Doppler/história , Urologia/história , Urologia/estatística & dados numéricos
3.
Arch Esp Urol ; 57(2): 135-9, 2004 Mar.
Artigo em Espanhol | MEDLINE | ID: mdl-15074783

RESUMO

OBJECTIVES: In this article we develop the analysis of stability of the solution(s) of the differential equation describing detrusor behaviour as a forced and overcushioned tensor. We followed the theories of Lyapunov about stability. Therefore, we used a matricial method which is more didactical and also analytically more graphic. Solutions are placed in the Trace-Determinant (T-D) plane. This work represents a previous study to the one about detrusor as a dispersing system. And about which we would have to perform an analysis, first from the point of view of the Hamiltonian systems, then from the point of view of chaos. METHODS/RESULTS: We worked on the equation which has been widely described in previous articles in the series of publications titled "the bases of urodynamics". In previous articles, we gave results after applying other methods different from the ones that are usually employed to solve differential equations. We used the matricial method for the analysis of stability of solutions because of its greater didactical clarity. CONCLUSIONS: We conclude that we are in an unstable balance until the moment right before to start voiding. Once voiding is initiated, we are in front of a system with a drain, which at the same time is a fountain. Then we pass from a Hamiltonian dispersing system to a chaotic one. But this is another question...


Assuntos
Músculo Liso/fisiologia , Bexiga Urinária/fisiologia , Urodinâmica , Humanos , Matemática
4.
Arch Esp Urol ; 56(9): 1017-22, 2003 Nov.
Artigo em Espanhol | MEDLINE | ID: mdl-14674287

RESUMO

OBJECTIVES: To make an analysis of the usefulness of urodynamic tests and what can be obtained from them. METHODS: We also perform and analytical deduction of those parameters that define detrusor behavior, such as the constant defining bladder compliance, the bladder elastic constant, in its tensile properties, and we found the expression of resistances and calculate the abdominal pressure formula; therefore we don't need to introduce a rectal catheter to know the value of those parameters that define bladder dynamics. RESULTS: Although they are provisional, they allow foreseeing a promising future for this application of a well-known device. CONCLUSIONS: Currently, we can only define the bladder behaviour, its resistances, the detrusor drive and compliance with the only discomfort of a perineal Doppler ultrasound. Time will open new possibilities.


Assuntos
Urodinâmica , Humanos , Matemática , Ultrassonografia Doppler
5.
Arch. esp. urol. (Ed. impr.) ; 56(9): 1017-1022, nov. 2003.
Artigo em Es | IBECS | ID: ibc-25196

RESUMO

OBJETIVOS: En este trabajo, hacemos un análisis somero de las utilidades de las pruebas urodinámicas y de lo que de ellas podemos obtener. MÉTODOS: También hacemos una deducción analítica de los parámetros que definen el comportamiento del detrusor, como son la constante que define la acomodación vesical, la constante elástica de la vejiga, en lo que de tensor tiene y hallamos la expresión de las resistencias, y calculamos la fórmula de la presión abdominal; por lo que no necesitamos colocar sonda transrectal para conocer el valor de los parámetros que definen la dinámica vesical. RESULTADOS: Aun siendo provisionales, dejan preveer un futuro prometedor, para esta aplicación de un dispositivo ya conocida por todos. CONCLUSIONES: De momento hemos de conformarnos con definir el comportamiento vesical, sus resistencias, empuje del detrusor y acomodación del mismo; sin mas molestias que la eco-doppler perineal. El tiempo nos irá abriendo posibilidades (AU)


Assuntos
Humanos , Urodinâmica , Ultrassonografia Doppler , Matemática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...