Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Sci (China) ; 46: 182-9, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27521950

RESUMO

Biomixtures constitute the biologically active part of biopurification systems (BPS), which are used to treat pesticide-containing wastewater. The aim of this work was to determine whether co-application of chlorpyrifos (CLP) affects the removal of carbofuran (CFN) (both insecticide/nematicides) in a coconut fiber-compost-soil biomixture (FCS biomixture), after aging or previous exposure to CFN. Removal of CFN and two of its transformation products (3-hydroxycarbofuran and 3-ketocarbofuran) was enhanced in pre-exposed biomixtures in comparison to aged biomixtures. The co-application of CLP did not affect CFN removal, which suggests that CLP does not inhibit microbial populations in charge of CFN transformation. Contrary to the removal behavior, mineralization of radiolabeled (14)C-pesticides showed higher mineralization rates of CFN in aged biomixtures (with respect to freshly prepared or pre-exposed biomixtures). In the case of CLP, mineralization was favored in freshly prepared biomixtures, which could be ascribed to high sorption during aging and microbial inhibition by CFN in pre-exposure. Regardless of removal and mineralization results, toxicological assays revealed a steep decrease in the acute toxicity of the matrix on the microcrustacean Daphnia magna (over 97%) after 8days of treatment of individual pesticides or the mixture CFN/CLP. Results suggest that FCS biomixtures are suitable to be used in BPS for the treatment of wastewater in fields where both pesticides are employed.


Assuntos
Carbofurano/análise , Clorpirifos/análise , Cocos , Praguicidas/análise , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Poluentes Químicos da Água/análise , Biodegradação Ambiental
2.
Chemosphere ; 144: 864-71, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26421626

RESUMO

Biomixtures are used for the removal of pesticides from agricultural wastewater. As biomixtures employ high content of lignocellulosic substrates, their bioaugmentation with ligninolytic fungi represents a novel approach for their enhancement. Nonetheless, the decrease in the concentration of the pesticide may result in sublethal concentrations that still affect ecosystems. Two matrices, a microcosm of rice husk (lignocellulosic substrate) bioaugmented with the fungus Trametes versicolor and a biomixture that contained fungally colonized rice husk were used in the degradation of the insecticide/nematicide carbofuran (CFN). Elutriates simulating lixiviates from these matrices were used to assay the ecotoxicological effects at sublethal level over Daphnia magna (Straus) and the fish Oreochromis aureus (Steindachner) and Oncorhynchus mykiss (Walbaum). Elutriates obtained after 30 d of treatment in the rice husk microcosms at dilutions over 2.5% increased the offspring of D. magna as a trade-off stress response, and produced mortality of neonates at dilutions over 5%. Elutriates (dilution 1:200) obtained during a 30 d period did not produce alterations on the oxygen consumption and ammonium excretion of O. mykiss, however these physiological parameters were affected in O. aureus at every time point of treatment, irrespective of the decrease in CFN concentration. When the fungally colonized rice husk was used to prepare a biomixture, where more accelerated degradation is expected, similar alterations on the responses by O. aureus were achieved. Results suggest that despite the good removal of the pesticide, it is necessary to optimize biomixtures to minimize their residual toxicity and potential chronic effects on aquatic life.


Assuntos
Carbofurano/isolamento & purificação , Ecotoxicologia/métodos , Praguicidas/isolamento & purificação , Trametes/crescimento & desenvolvimento , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Agricultura , Animais , Biodegradação Ambiental , Carbofurano/toxicidade , Ciclídeos/crescimento & desenvolvimento , Ciclídeos/metabolismo , Daphnia/efeitos dos fármacos , Daphnia/metabolismo , Oncorhynchus mykiss/crescimento & desenvolvimento , Oncorhynchus mykiss/metabolismo , Oryza/microbiologia , Praguicidas/toxicidade , Trametes/metabolismo , Águas Residuárias/química , Poluentes Químicos da Água/toxicidade
3.
Environ Sci Pollut Res Int ; 22(23): 19184-93, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26250812

RESUMO

Pesticide biopurification systems contain a biologically active matrix (biomixture) responsible for the accelerated elimination of pesticides in wastewaters derived from pest control in crop fields. Biomixtures have been typically prepared using the volumetric composition 50:25:25 (lignocellulosic substrate/humic component/soil); nonetheless, formal composition optimization has not been performed so far. Carbofuran is an insecticide/nematicide of high toxicity widely employed in developing countries. Therefore, the composition of a highly efficient biomixture (composed of coconut fiber, compost, and soil, FCS) for the removal of carbofuran was optimized by means of a central composite design and response surface methodology. The volumetric content of soil and the ratio coconut fiber/compost were used as the design variables. The performance of the biomixture was assayed by considering the elimination of carbofuran, the mineralization of (14)C-carbofuran, and the residual toxicity of the matrix, as response variables. Based on the models, the optimal volumetric composition of the FCS biomixture consists of 45:13:42 (coconut fiber/compost/soil), which resulted in minimal residual toxicity and ∼99% carbofuran elimination after 3 days. This optimized biomixture considerably differs from the standard 50:25:25 composition, which remarks the importance of assessing the performance of newly developed biomixtures during the design of biopurification systems.


Assuntos
Carbofurano/isolamento & purificação , Praguicidas/isolamento & purificação , Poluentes do Solo/isolamento & purificação , Biodegradação Ambiental , Carbofurano/química , Cocos/química , Modelos Químicos , Praguicidas/química , Solo/química , Poluentes do Solo/química , Águas Residuárias/química
4.
Environ Sci Pollut Res Int ; 22(13): 9839-48, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25647489

RESUMO

A biomixture constitutes the active core of the on-farm biopurification systems, employed for the detoxification of pesticide-containing wastewaters. As biomixtures should be prepared considering the available local materials, the present work aimed to evaluate the performance of ten different biomixtures elaborated with by-products from local farming, in the degradation of the insecticide/nematicide carbofuran (CFN), in order to identify suitable autochthonous biomixtures to be used in the tropics. Five different lignocellulosic materials mixed with either compost or peat and soil were employed in the preparation of the biomixtures. The comprehensive evaluation of the biomixtures included removal of the parent compound, formation of transformation products, mineralization of radiolabeled CFN, and determination of the residual toxicity of the process. Detoxification capacity of the matrices was high, and compost-based biomixtures showed better performance than peat-based biomixtures. CFN removal over 98.5% was achieved within 16 days (eight out of ten biomixtures), with half-lives below 5 days in most of the cases. 3-Hydroxycarbofuran and 3-ketocarbofuran were found as transformation products at very low concentrations suggesting their further degradation. Mineralization of CFN was also achieved after 64 days (2.9 to 15.1%); several biomixtures presented higher mineralization than the soil itself. Acute toxicity determinations with Daphnia magna revealed a marked detoxification in the matrices at the end of the process; low residual toxicity was observed only in two of the peat-based biomixtures. Overall best efficiency was achieved with the biomixture composed of coconut fiber-compost-soil; however, results suggest that in the case of unavailability of coconut fiber, other biomixtures may be employed with similar performance.


Assuntos
Carbofurano/análogos & derivados , Praguicidas/química , Poluentes Químicos da Água/química , Adaptação Fisiológica , Agricultura , Biodegradação Ambiental , Carbofurano/análise , Carbofurano/química , Meia-Vida , Praguicidas/análise , Solo/química , Microbiologia do Solo , Clima Tropical , Águas Residuárias/química , Poluentes Químicos da Água/análise , Purificação da Água
5.
FEMS Microbiol Lett ; 345(1): 1-12, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23607759

RESUMO

Environmental contamination with pesticides is an undesired consequence of agricultural activities. Biopurification systems (BPS) comprise a novel strategy to degrade pesticides from contaminated wastewaters, consisting of a highly active biological mixture confined in a container or excavation. The design of BPS promotes microbial activity, in particular by white rot fungi (WRF). Due to their physiological features, specifically the production of highly unspecific ligninolytic enzymes and some intracellular enzymatic complexes, WRF show the ability to transform a wide range of organic pollutants. This minireview summarizes the potential participation of WRF in BPS. The first part presents the potential use of WRF in biodegradation of pollutants, particularly pesticides, and includes a brief description of the enzymatic systems involved in their oxidation. The second part presents an outline of BPS, focusing on the elements that influence the participation of WRF in their operation, and includes a summary of the studies regarding the fungal-mediated degradation of pesticides in BPS biomixtures and other solid-phase systems that mimic BPS.


Assuntos
Fungos/metabolismo , Praguicidas/metabolismo , Águas Residuárias/microbiologia , Poluentes Químicos da Água/metabolismo , Purificação da Água , Agricultura , Biodegradação Ambiental , Águas Residuárias/análise , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...