Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Transl Myol ; 33(3)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37700736

RESUMO

Reports of electromyography during hypoxic exercise are contrasting, due to protocol and muscle diversity. This work aimed to investigate alterations in muscle activation and myoelectrical fatigue during exercise at high-altitude in those muscles primarily involved in trekking. Twelve young adults balanced by gender and age were tested at low (1,667 m) and high (4,554 m, "Capanna Margherita", Italy) altitude, during an isometric squat lasting 60 seconds. High-density surface electromyography was performed from the quadriceps of right limb. The root mean square (RMS), median frequency with its slope, and muscle fiber conduction velocity (MFCV) were computed. Neither males nor females showed changes in median frequency (Med: 36.13 vs 35.63 Hz) and its slope (Med: -9 vs -12 degree) in response to high-altitude trekking, despite a great inter-individual heterogeneity, nor differences were found for MFCV. RMS was not significantly equivalent, with greater values at low altitude (0.385 ± 0.104 mV) than high altitude (0.346 ± 0.090 mV). Unexpected results can be due either to a postural compensation of the whole body compensating for a relatively greater effort or to the inability to support muscle activation after repeated physical efforts.  Interesting results may emerge by measuring simultaneously electromyography, muscle oxygenation and kinematics comparing trekking at normoxia vs hypoxia.

2.
Respir Physiol Neurobiol ; 314: 104086, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37257573

RESUMO

This study aimed to evaluate changes in lung function assessed by spirometry and blood gas content in healthy high-altitude sojourners during a trek in the Himalayas. A group of 19 Italian adults (11 males and 8 females, mean age 43 ± 15 years, and BMI 24.2 ± 3.7 kg/m2) were evaluated as part of a Mount Everest expedition in Nepal. Spirometry and arterial blood gas content were evaluated at baseline in Kathmandu (≈1400 m), at the Pyramid Laboratory - Observatory (peak altitude of ≈5000 m), and on return to Kathmandu 2-3 days after arrival at each site. All participants took 250 mg of acetazolamide per os once daily during the ascent. We found that arterial hemoglobin saturation, O2 and CO2 partial pressures, and the bicarbonate level all decreased (in all cases, p < 0.001 with R2 =0.70-0.90), while pHa was maintained stable at the peak altitude. Forced vital capacity (FVC) remained stable, while forced expiratory volume in 1 s (FEV1) decreased (p = 0.010, n2p =0.228), resulting in a lower FEV1/FVC ratio (p < 0.001, n2p =0.380). The best predictor for acute mountain sickness was the O2 partial pressure at the peak altitude (p = 0.004, R2 =0.39). Finger pulse oximetry overestimated peripheral saturation relative to arterial saturation. We conclude that high-altitude hypoxia alters the respiratory function and the oxygen saturation of the arterial blood hemoglobin. Additionally, air rarefaction and temperature reduction, favoring hypoxic bronchoconstriction, could affect respiration. Pulse oximetry seems not enough to assist medical decisions at high altitudes.


Assuntos
Doença da Altitude , Altitude , Adulto , Masculino , Feminino , Humanos , Pessoa de Meia-Idade , Hipóxia , Volume Expiratório Forçado , Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...