Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther ; 25(2): 331-341, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28109959

RESUMO

As the most common subtype of Leber congenital amaurosis (LCA), LCA10 is a severe retinal dystrophy caused by mutations in the CEP290 gene. The most frequent mutation found in patients with LCA10 is a deep intronic mutation in CEP290 that generates a cryptic splice donor site. The large size of the CEP290 gene prevents its use in adeno-associated virus (AAV)-mediated gene augmentation therapy. Here, we show that targeted genomic deletion using the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system represents a promising therapeutic approach for the treatment of patients with LCA10 bearing the CEP290 splice mutation. We generated a cellular model of LCA10 by introducing the CEP290 splice mutation into 293FT cells and we showed that guide RNA pairs coupled with SpCas9 were highly efficient at removing the intronic splice mutation and restoring the expression of wild-type CEP290. In addition, we demonstrated that a dual AAV system could effectively delete an intronic fragment of the Cep290 gene in the mouse retina. To minimize the immune response to prolonged expression of SpCas9, we developed a self-limiting CRISPR/Cas9 system that minimizes the duration of SpCas9 expression. These results support further studies to determine the therapeutic potential of CRISPR/Cas9-based strategies for the treatment of patients with LCA10.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Amaurose Congênita de Leber/genética , Processamento Alternativo , Animais , Antígenos de Neoplasias/genética , Proteínas de Ciclo Celular , Proteínas do Citoesqueleto , Feminino , Expressão Gênica , Ordem dos Genes , Marcação de Genes , Loci Gênicos , Íntrons , Amaurose Congênita de Leber/terapia , Camundongos , Mutação , Proteínas de Neoplasias/genética , RNA Guia de Cinetoplastídeos , RNA Mensageiro/genética , Retina/metabolismo , Deleção de Sequência , Reparo Gênico Alvo-Dirigido
2.
J Biol Chem ; 288(29): 21161-21172, 2013 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-23754286

RESUMO

Although a high level of lactate is quintessential to both tumors and wound healing, the manner by which lactate impacts endothelial cells to promote angiogenesis and thereby create or restore vascular perfusion to growing tissues has not been fully elucidated. Here we report that lactate activated the PI3K/Akt pathway in primary human endothelial cells. Furthermore, activating this signaling pathway was required for lactate-stimulated organization of endothelial cells into tubes and for sprouting of vessels from mouse aortic explants. Lactate engaged the PI3K/Akt pathway via ligand-mediated activation of the three receptor tyrosine kinases Axl, Tie2, and VEGF receptor 2. Neutralizing the ligands for these receptor tyrosine kinases, pharmacologically inhibiting their kinase activity or suppressing their expression largely eliminated the ability of cells and explants to respond to lactate. Elucidating the mechanism by which lactate communicates with endothelial cells presents a previously unappreciated opportunity to improve our understanding of the angiogenic program and to govern it.


Assuntos
Ácido Láctico/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Receptor TIE-2/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Angiopoietina-1/metabolismo , Animais , Bovinos , Ativação Enzimática/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/enzimologia , Humanos , Técnicas In Vitro , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Ligantes , Camundongos , Modelos Biológicos , Transdução de Sinais/efeitos dos fármacos , Receptor Tirosina Quinase Axl
3.
J Neurosci ; 32(27): 9359-68, 2012 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-22764243

RESUMO

Dopamine is a key neuromodulator in the retina and brain that supports motor, cognitive, and visual function. Here, we developed a mouse model on a C57 background in which expression of the rate-limiting enzyme for dopamine synthesis, tyrosine hydroxylase, is specifically disrupted in the retina. This model enabled assessment of the overall role of retinal dopamine in vision using electrophysiological (electroretinogram), psychophysical (optokinetic tracking), and pharmacological techniques. Significant disruptions were observed in high-resolution, light-adapted vision caused by specific deficits in light responses, contrast sensitivity, acuity, and circadian rhythms in this retinal dopamine-depleted mouse model. These global effects of retinal dopamine on vision are driven by the differential actions of dopamine D1 and D4 receptors on specific retinal functions and appear to be due to the ongoing bioavailability of dopamine rather than developmental effects. Together, our data indicate that dopamine is necessary for the circadian nature of light-adapted vision as well as optimal contrast detection and acuity.


Assuntos
Adaptação Ocular/fisiologia , Dopamina/fisiologia , Neurônios Dopaminérgicos/fisiologia , Retina/fisiologia , Visão Ocular/fisiologia , Animais , Sensibilidades de Contraste/fisiologia , Dopamina/biossíntese , Neurônios Dopaminérgicos/enzimologia , Eletrorretinografia/métodos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Tirosina 3-Mono-Oxigenase/deficiência , Tirosina 3-Mono-Oxigenase/genética , Acuidade Visual/fisiologia
5.
PLoS One ; 7(6): e38985, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22701739

RESUMO

The retina is both a sensory organ and a self-sustained circadian clock. Gene targeting studies have revealed that mammalian circadian clocks generate molecular circadian rhythms through coupled transcription/translation feedback loops which involve 6 core clock genes, namely Period (Per) 1 and 2, Cryptochrome (Cry) 1 and 2, Clock, and Bmal1 and that the roles of individual clock genes in rhythms generation are tissue-specific. However, the mechanisms of molecular circadian rhythms in the mammalian retina are incompletely understood and the extent to which retinal neural clocks share mechanisms with the suprachiasmatic nucleus (SCN), the central neural clock, is unclear. In the present study, we examined the rhythmic amplitude and period of real-time bioluminescence rhythms in explants of retina from Per1-, Per2-, Per3-, Cry1-, Cry2-, and Clock-deficient mice that carried transgenic PERIOD2::LUCIFERASE (PER2::LUC) or Period1::luciferase (Per1::luc) circadian reporters. Per1-, Cry1- and Clock-deficient retinal and SCN explants showed weakened or disrupted rhythms, with stronger effects in retina compared to SCN. Per2, Per3, and Cry2 were individually dispensable for sustained rhythms in both tissues. Retinal and SCN explants from double knockouts of Cry1 and Cry2 were arrhythmic. Gene effects on period were divergent with reduction in the number of Per1 alleles shortening circadian period in retina, but lengthening it in SCN, and knockout of Per3 substantially shortening retinal clock period, but leaving SCN unaffected. Thus, the retinal neural clock has a unique pattern of clock gene dependence at the tissue level that it is similar in pattern, but more severe in degree, than the SCN neural clock, with divergent clock gene regulation of rhythmic period.


Assuntos
Relógios Circadianos/genética , Ritmo Circadiano/fisiologia , Proteínas Luminescentes/metabolismo , Retina/fisiologia , Núcleo Supraquiasmático/fisiologia , Análise de Variância , Animais , Proteínas CLOCK/metabolismo , Ritmo Circadiano/genética , Criptocromos/genética , Criptocromos/metabolismo , Luciferases/metabolismo , Proteínas Luminescentes/fisiologia , Camundongos , Camundongos Knockout , Proteínas Circadianas Period/metabolismo , Retina/metabolismo , Estatísticas não Paramétricas , Núcleo Supraquiasmático/metabolismo
6.
EMBO J ; 31(7): 1692-703, 2012 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-22327215

RESUMO

Herein, we report that vascular endothelial growth factor A (VEGF-A) engages the PI3K/Akt pathway by a previously unknown mechanism that involves three tyrosine kinases. Upon VEGF-A-dependent activation of VEGF receptor-2 (VEGFR-2), and subsequent TSAd-mediated activation of Src family kinases (SFKs), SFKs engage the receptor tyrosine kinase Axl via its juxtamembrane domain to trigger ligand-independent autophosphorylation at a pair of YXXM motifs that promotes association with PI3K and activation of Akt. Other VEGF-A-mediated signalling pathways are independent of Axl. Interfering with Axl expression or function impairs VEGF-A- but not bFGF-dependent migration of endothelial cells. Similarly, Axl null mice respond poorly to VEGF-A-induced vascular permeability or angiogenesis, whereas other agonists induce a normal response. These results elucidate the mechanism by which VEGF-A activates PI3K/Akt, and identify previously unappreciated potential therapeutic targets of VEGF-A-driven processes.


Assuntos
Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Motivos de Aminoácidos , Animais , Movimento Celular , Células Endoteliais/fisiologia , Fator 2 de Crescimento de Fibroblastos/fisiologia , Camundongos , Camundongos Knockout , Neovascularização Fisiológica , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/genética , Transdução de Sinais , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor Tirosina Quinase Axl
8.
PLoS Biol ; 6(10): e249, 2008 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-18959477

RESUMO

The influence of the mammalian retinal circadian clock on retinal physiology and function is widely recognized, yet the cellular elements and neural regulation of retinal circadian pacemaking remain unclear due to the challenge of long-term culture of adult mammalian retina and the lack of an ideal experimental measure of the retinal circadian clock. In the current study, we developed a protocol for long-term culture of intact mouse retinas, which allows retinal circadian rhythms to be monitored in real time as luminescence rhythms from a PERIOD2::LUCIFERASE (PER2::LUC) clock gene reporter. With this in vitro assay, we studied the characteristics and location within the retina of circadian PER2::LUC rhythms, the influence of major retinal neurotransmitters, and the resetting of the retinal circadian clock by light. Retinal PER2::LUC rhythms were routinely measured from whole-mount retinal explants for 10 d and for up to 30 d. Imaging of vertical retinal slices demonstrated that the rhythmic luminescence signals were concentrated in the inner nuclear layer. Interruption of cell communication via the major neurotransmitter systems of photoreceptors and ganglion cells (melatonin and glutamate) and the inner nuclear layer (dopamine, acetylcholine, GABA, glycine, and glutamate) did not disrupt generation of retinal circadian PER2::LUC rhythms, nor did interruption of intercellular communication through sodium-dependent action potentials or connexin 36 (cx36)-containing gap junctions, indicating that PER2::LUC rhythms generation in the inner nuclear layer is likely cell autonomous. However, dopamine, acting through D1 receptors, and GABA, acting through membrane hyperpolarization and casein kinase, set the phase and amplitude of retinal PER2::LUC rhythms, respectively. Light pulses reset the phase of the in vitro retinal oscillator and dopamine D1 receptor antagonists attenuated these phase shifts. Thus, dopamine and GABA act at the molecular level of PER proteins to play key roles in the organization of the retinal circadian clock.


Assuntos
Ritmo Circadiano/fisiologia , Dopamina/fisiologia , Retina/metabolismo , Ácido gama-Aminobutírico/fisiologia , Acetilcolina/metabolismo , Acetilcolina/fisiologia , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromatografia Líquida de Alta Pressão , Ritmo Circadiano/genética , Dopamina/metabolismo , Ácido Glutâmico/metabolismo , Ácido Glutâmico/fisiologia , Glicina/metabolismo , Glicina/fisiologia , Imuno-Histoquímica , Hibridização In Situ , Luciferases/genética , Luciferases/metabolismo , Melatonina/metabolismo , Melatonina/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Circadianas Period , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/fisiologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Retina/fisiologia , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ácido gama-Aminobutírico/metabolismo
9.
Proc Natl Acad Sci U S A ; 103(25): 9703-8, 2006 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-16766660

RESUMO

The mammalian retina contains an endogenous circadian pacemaker that broadly regulates retinal physiology and function, yet the cellular origin and organization of the mammalian retinal circadian clock remains unclear. Circadian clock neurons generate daily rhythms via cell-autonomous autoregulatory clock gene networks, and, thus, to localize circadian clock neurons within the mammalian retina, we have studied the cell type-specific expression of six core circadian clock genes in individual, identified mouse retinal neurons, as well as characterized the clock gene expression rhythms in photoreceptor degenerate rd mouse retinas. Individual photoreceptors, horizontal, bipolar, dopaminergic (DA) amacrines, catecholaminergic (CA) amacrines, and ganglion neurons were identified either by morphology or by a tyrosine hydroxylase (TH) promoter-driven red fluorescent protein (RFP) fluorescent reporter. Cells were collected, and their transcriptomes were subjected to multiplex single-cell RT-PCR for the core clock genes Period (Per) 1 and 2, Cryptochrome (Cry) 1 and 2, Clock, and Bmal1. Individual horizontal, bipolar, DA, CA, and ganglion neurons, but not photoreceptors, were found to coordinately express all six core clock genes, with the lowest proportion of putative clock cells in photoreceptors (0%) and the highest proportion in DA neurons (30%). In addition, clock gene rhythms were found to persist for >25 days in isolated, cultured rd mouse retinas in which photoreceptors had degenerated. Our results indicate that multiple types of retinal neurons are potential circadian clock neurons that express key elements of the circadian autoregulatory gene network and that the inner nuclear and ganglion cell layers of the mammalian retina contain functionally autonomous circadian clocks.


Assuntos
Ritmo Circadiano/fisiologia , Retina/citologia , Retina/fisiologia , Animais , Proteínas de Ciclo Celular , Núcleo Celular/metabolismo , Células Cultivadas , Regulação da Expressão Gênica , Masculino , Camundongos , Neurônios/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Circadianas Period , Células Ganglionares da Retina/metabolismo , Fatores de Transcrição/metabolismo
10.
Brain Res ; 1050(1-2): 101-9, 2005 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-15978557

RESUMO

The vertebrate retina contains self-sustained circadian clocks that broadly influence retinal physiology. In the present study, we have examined the relationship of nitric oxide, GABAergic and glycinergic inner retinal neurons with expression of a reporter for the circadian clock gene Period1 (Per1). Using Per1 : :GFP transgenic mice, we found that 72% of brain nitric oxide synthase (bNOS) expressing amacrine cells (NOS amacrine cells) sampled during the daytime were also immunoreactive for Per1-driven GFP. The number of bright GFP(+) NOS(+) cells was greater at Zeitgeber time (ZT) 10 than at 22, and this pattern persisted in retinas from animals which were placed in constant darkness [Circadian time (CT) 10 vs. 22]. Intensities of GFP-IR for individual NOS amacrine cells were analyzed at ZT4, 10, 16 and 22, with the peak value occurring at ZT10. Similar results were obtained from retinas sampled at CT4, 10, 16 and 22 in constant darkness, indicating that an endogenous circadian clock drives the transcription of the Per1 clock gene within NOS amacrine cells. The predominance of Per1 : :GFP(+) amacrine cells (82%), was immunoreactive to glutamate decarboxylase 65, but no Per1 : :GFP(+) amacrine cells colabeled with a glycine transporter 1 antibody. The results demonstrate circadian rhythms in Per1 promoter activation in nitric oxide (NO) and GABA secreting amacrine cells, and suggest that NO and GABA could be controlled by circadian clock mechanisms in the mammalian retina.


Assuntos
Células Amácrinas/fisiologia , Ritmo Circadiano/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Óxido Nítrico Sintase/metabolismo , Proteínas Nucleares/genética , Animais , Proteínas de Ciclo Celular , Expressão Gênica/fisiologia , Glicina/fisiologia , Proteínas de Fluorescência Verde/genética , Masculino , Camundongos , Camundongos Transgênicos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo I , Proteínas Circadianas Period , Ácido gama-Aminobutírico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...