Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Neurosci Bull ; 38(12): 1457-1475, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35817941

RESUMO

Insufficient remyelination due to impaired oligodendrocyte precursor cell (OPC) differentiation and maturation is strongly associated with irreversible white matter injury (WMI) and neurological deficits. We analyzed whole transcriptome expression to elucidate the potential role and underlying mechanism of action of lipocalin-2 (LCN2) in OPC differentiation and WMI and identified the receptor SCL22A17 and downstream transcription factor early growth response protein 1 (EGR1) as the key signals contributing to LCN2-mediated insufficient OPC remyelination. In LCN-knockdown and OPC EGR1 conditional-knockout mice, we discovered enhanced OPC differentiation in developing and injured white matter (WM); consistent with this, the specific inactivation of LCN2/SCl22A17/EGR1 signaling promoted remyelination and neurological recovery in both atypical, acute WMI due to subarachnoid hemorrhage and typical, chronic WMI due to multiple sclerosis. This potentially represents a novel strategy to enhance differentiation and remyelination in patients with white matter injury.


Assuntos
Lesões Encefálicas , Células Precursoras de Oligodendrócitos , Remielinização , Hemorragia Subaracnóidea , Substância Branca , Camundongos , Animais , Remielinização/fisiologia , Células Precursoras de Oligodendrócitos/metabolismo , Hemorragia Subaracnóidea/metabolismo , Lipocalina-2/genética , Lipocalina-2/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Oligodendroglia/metabolismo , Camundongos Knockout , Diferenciação Celular/fisiologia , Lesões Encefálicas/metabolismo
3.
Neurobiol Dis ; 140: 104862, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32251841

RESUMO

Although the anterior cingulate cortex (ACC) plays a vital role in neuropathic pain-related aversion, the underlying mechanisms haven't been fully studied. The mesolimbic dopamine system encodes reward and aversion, and participates in the exacerbation of chronic pain. Therefore, we investigated whether the ACC modulates aversion to neuropathic pain via control of the mesolimbic dopamine system, in a rat model of chronic constriction injury (CCI) to the sciatic nerve. Using anterograde and retrograde tracings, we confirmed that a subgroup of ACC neurons projected to the nucleus accumbens (NAc) and ventral tegmental area (VTA), which are two crucial nodes of the mesolimbic dopamine system. Combining electrophysiology in juvenile rats 7 days post-CCI, we found that the NAc/VTA-projecting neurons were hyperexcitable after CCI. Chemogenetic inhibition of these projections induced conditioned place preference in young adult rats 10-14 days post-CCI, without modulating the evoked pain threshold, whereas activation of these projections in sham rats mimicked aversive behavior. Furthermore, the function of the ACC projections was probably mediated by NAc D2-type medium spiny neurons and VTA GABAergic neurons. Taken together, our findings suggest that projections from the ACC to the NAc and VTA mediate neuropathic pain-related aversive behavior.


Assuntos
Neuralgia/fisiopatologia , Núcleo Accumbens/fisiopatologia , Limiar da Dor/fisiologia , Área Tegmentar Ventral/fisiopatologia , Animais , Dor Crônica , Condicionamento Clássico , Neurônios Dopaminérgicos , Giro do Cíngulo/fisiopatologia , Masculino , Ratos , Recompensa
4.
Front Neurol ; 9: 282, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29922213

RESUMO

Progressive white matter (WM) impairments caused by subarachnoid hemorrhage (SAH) contribute to cognitive deficits and poor clinical prognoses; however, their pathogenetic mechanisms are poorly understood. We investigated the role of nexilin and oligodendrocyte progenitor cell (OPC)-mediated repair in a mouse model of experimental SAH generated via left endovascular perforation. Nexilin expression was enhanced by the elevated migration of OPCs after SAH. Knocking down nexilin by siRNA reduced OPC migration both in vitro and in vivo and abridged WM repair. In contrast, the protease-activated receptor 1 (PAR1), Ras-proximate-1 (RAP1) and phosphorylated RAP1 (pRAP1) levels in WM were elevated after SAH. The genetic inhibition of PAR1 reduced RAP1 and pRAP1 expression, further enhancing nexilin expression. When delivered at an early stage at a concentration of 25 µg/kg, thrombin receptor antagonist peptide along with PAR1 knockdown rescued the down-regulation of myelin basic protein and improved remyelination at the later stage of SAH. Our results suggest that nexilin is required for OPC migration and remyelination following SAH, as it negatively regulates PAR1/RAP1 signaling, thus providing a promising therapeutic target in WM repair and functional recovery.

5.
Neurosci Lett ; 662: 1-5, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28987816

RESUMO

To understand the potential mechanisms involved in the beneficial effects of aspirin (ASA) in mood disorders, Alzheimer's (AD) and Parkinson's disease (PD), we investigated the effects of ASA on the expression of iron transport proteins transferrin receptor 1 (TfR1), ferroportin 1 (Fpn1), and iron storage protein ferritin light chain (Ft-L) in interleukin-6 (IL-6)-treated PC-12 cells. We demonstrated that IL-6 alone could induce a severe decline in Fpn1 expression and cell viability, and an increase in Ft-L protein, while ASA could markedly diminish the effects of IL-6 on these parameters. We also found that IL-6 significantly increased hepcidin expression and janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3) phosphorylation, while ASA also observably suppressed these IL-6-induced effects. The data imply that ASA increases Fpn1 expression by inhibiting hepcidin expression via the IL-6/JAK/STAT3 pathway and show that the reduced content of Ft-L is due to the increased Fpn1 and subsequent iron release in the cells. The reduction of iron in neuronal cells by the increased expression of Fpn1 might be partly associated with the beneficial effects of ASA on mood disorders, AD and PD.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Aspirina/farmacologia , Proteínas de Transporte de Cátions/metabolismo , Hepcidinas/antagonistas & inibidores , Interleucina-6/farmacologia , Janus Quinases/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Células PC12 , Fosforilação , Ratos , Transdução de Sinais
6.
Front Behav Neurosci ; 11: 115, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28659772

RESUMO

Background: Transcranial direct current stimulation (tDCS) is widely used to treat human nerve disorders and neuropathic pain by modulating the excitability of cortex. The effectiveness of tDCS is influenced by its stimulation parameters, but there have been no systematic studies to help guide the selection of different parameters. Objective: This study aims to assess the effects of tDCS of primary motor cortex (M1) on chronic neuropathic pain in rats and to test for the optimal parameter combinations for analgesia. Methods: Using the chronic neuropathic pain models of chronic constriction injury (CCI), we measured pain thresholds before and after anodal-tDCS (A-tDCS) using different parameter conditions, including stimulation intensity, stimulation time, intervention time and electrode located (ipsilateral or contralateral M1 of the ligated paw on male/female CCI models). Results: Following the application of A-tDCS over M1, we observed that the antinociceptive effects were depended on different parameters. First, we found that repetitive A-tDCS had a longer analgesic effect than single stimulus, and both ipsilateral-tDCS (ip-tDCS) and contralateral-tDCS (con-tDCS) produce a long-lasting analgesic effect on neuropathic pain. Second, the antinociceptive effects were intensity-dependent and time-dependent, high intensities worked better than low intensities and long stimulus durations worked better than short stimulus durations. Third, timing of the intervention after injury affected the stimulation outcome, early use of tDCS was an effective method to prevent the development of pain, and more frequent intervention induced more analgesia in CCI rats, finally, similar antinociceptive effects of con- and ip-tDCS were observed in both sexes of CCI rats. Conclusion: Optimized protocols of tDCS for treating antinociceptive effects were developed. These findings should be taken into consideration when using tDCS to produce analgesic effects in clinical applications.

7.
Anesthesiology ; 127(3): 515-533, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28422818

RESUMO

BACKGROUND: Inhibition of the metabotropic glutamate receptor subtype 1 in the anterior cingulate cortex has an analgesic effect during sustained nociceptive hypersensitivity. However, the specific changes in different subtypes of anterior cingulate cortex layer 5 pyramidal neurons, as well as the distinct effect of metabotropic glutamate receptor subtype 1 inhibition on different neuronal subtypes, have not been well studied. METHODS: Retrograde labeling combined with immunofluorescence, whole cell clamp recording, and behavioral tests combined with RNA interference were performed in a rat model of chronic constriction injury to the sciatic nerve. RESULTS: Commissural layer 5 pyramidal neurons (projecting to the contralateral cortex) existed in the anterior cingulate cortex. The voltage-gated potassium channel subunit 2-mediated current in these neurons were substantially reduced after chronic constriction injury (current densities at +30 mV for the sham, and chronic constriction injury neurons were [mean ± SD] 10.22 ± 3.42 pA/pF vs. 5.58 ± 2.71 pA/pF, respectively; n = 11; P < 0.01), which increased the spike width and fast afterhyperpolarization potential, resulting in hyperexcitability. Inhibition of metabotropic glutamate receptor subtype 1 alleviated the down-regulation of voltage-gated potassium channel subunit 2 currents (current density increased by 8.11 ± 3.22 pA/pF; n = 7; P < 0.01). Furthermore, knockdown of voltage-gated potassium channel subunit 2 current in the commissural neurons attenuated the analgesic effect of metabotropic glutamate receptor subtype 1 inhibition (n = 6 rats; P < 0.05). CONCLUSIONS: The effect of metabotropic glutamate receptor subtype 1 inhibition on commissural anterior cingulate cortex layer 5 pyramidal neurons is likely different with the modification of previously studied hyperpolarization-activated/cyclic nucleotide-gated channel-dependent neurons but relies on the alteration of voltage-gated potassium channel subunit 2 currents. These results will contribute to a better understanding of the therapeutic role of metabotropic glutamate receptor subtype 1 in chronic pain.


Assuntos
Giro do Cíngulo/fisiopatologia , Células Piramidais/fisiologia , Receptores de Glutamato Metabotrópico/agonistas , Nervo Isquiático/fisiopatologia , Animais , Comportamento Animal/fisiologia , Western Blotting , Doença Crônica , Constrição Patológica , Modelos Animais de Doenças , Regulação para Baixo/fisiologia , Imunofluorescência , Masculino , Metoxi-Hidroxifenilglicol/análogos & derivados , Neuralgia , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley
8.
Curr Drug Deliv ; 14(6): 773-784, 2017 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-27572088

RESUMO

BACKGROUND: Despite long-standing and worldwide efforts, hemorrhagic stroke remains a critical clinical syndrome that exerts a heavy toll on affected individuals and their families due to the lack of preventive and therapeutic targets. OBJECTIVE: To clarify the pathogenesis of hemorrhagic stroke and to identify novel therapeutic targets. METHOD: Targeting pericytes, the typical mural cells of microvessels, could serve as a way to modulate microvascular permeability, development, and maturation by regulating endothelial cell functions and modulating tissue fibrosis and inflammatory responses. RESULTS: Pericytes in hemorrhagic stroke may exert the following functions: before bleeding, the morphological aberration and dysfunction of pericytes may lead to aneurysm formation, angiopsathyrosis, and hemodynamic disturbances, ultimately causing vasculature rupture. In the acute phase after hemorrhage, pericytes are faced with a complicated bleeding environment, which results in the death of pericytes, blood-brain barrier damage, pericyte-mediated inflammatory cascades, white matter impairment, and ultimately aggravated neural injury. In the recovery period post-hemorrhage, in situ pericytes are activated and differentiate into neurons, glia and endothelial cells to repair the neural vascular network. Moreover, many pericytes are recruited to the lesion and contribute to blood-brain barrier remodeling, thus facilitating neurovascular functional recovery after stroke. CONCLUSION: Due to the multiple functions of pericytes in the development of vascular rupture and hemorrhagic stroke pathophysiology, additional drugs and trials targeting pericytes and evaluations of their effectiveness are required in future investigations to develop new strategies for the prevention and treatment of hemorrhagic stroke.


Assuntos
Hemorragia/tratamento farmacológico , Pericitos/efeitos dos fármacos , Preparações Farmacêuticas/administração & dosagem , Acidente Vascular Cerebral/tratamento farmacológico , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/efeitos dos fármacos , Humanos , Microvasos/efeitos dos fármacos , Microvasos/metabolismo
9.
J Clin Neurosci ; 34: 264-270, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27742373

RESUMO

Angiographic vasospasm, especially in the early phases (<72h) of subarachnoid hemorrhage (SAH), is one of the major complications after an aneurysm rupture and is often the cause of delayed neurological deterioration. Scutellarin (SCU), a flavonoid extracted from the traditional Chinese herb Erigeron breviscapus, has been widely accepted as an antioxidant, but the effect of SCU on vasospasm after SAH remains elusive. Endovascular perforation was conducted to induce SAH in Sprague-Dawley rats. Then, the underlying mechanism of the anti-vasospasm effect of SCU was investigated using a modified Garcia scale, India ink angiography, cross-sectional area analysis, immunohistochemistry staining and western blot. SCU (50µM, 100mg/kg) alleviated angiographic vasospasm and improved neurological function 48h after SAH and enhanced the expression of endothelial nitric oxide synthase (eNOS) at the intima of cerebral arteries. In addition, SCU upregulated the expression of phosphorylated extracellular-regulated kinase 5 (p-Erk5) and Kruppel-like factor 2 (KLF2) at 48h after SAH. However, the effects of SCU were reversed by the Erk5 inhibitor XMD8-92. Our results indicate that SCU could attenuate vasospasm and neurological deficits via modulating the Erk5-KLF2-eNOS pathway after SAH, which may provide an experimental basis for the clinical use of SCU treatment in SAH patients.


Assuntos
Apigenina/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Erigeron , Glucuronatos/farmacologia , Proteína Quinase 7 Ativada por Mitógeno/efeitos dos fármacos , Óxido Nítrico Sintase Tipo III/efeitos dos fármacos , Hemorragia Subaracnóidea/tratamento farmacológico , Vasoespasmo Intracraniano/tratamento farmacológico , Animais , Apigenina/administração & dosagem , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/administração & dosagem , Glucuronatos/administração & dosagem , Masculino , Ratos , Ratos Sprague-Dawley , Hemorragia Subaracnóidea/complicações , Vasoespasmo Intracraniano/etiologia
10.
Sci Rep ; 6: 22070, 2016 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-26911739

RESUMO

Subarachnoid hemorrhage (SAH) usually results from ruptured aneurysm, but how leaked hemoglobin regulates the microcirculation in the pathophysiology of early brain injury after SAH is still unclear. In the present study, we sought to investigate the role and possible mechanism of hemoglobin induced pericyte phenotype transformation in the regulation of microcirculation after SAH. Endovascular perforation SAH rat model, brain slices and cultured pericytes were used, and intervened with endothelial nitric oxide synthase (eNOS) antagonist L-NNA and its agonist scutellarin, hemoglobin, DETA/NO (nitric oxide(NO) donor), PITO (NO scavenger), 8-Br-cGMP (cGMP analog). We found modulating eNOS regulated pericyte α-SMA phenotype transformation, microcirculation, and neurological function in SAH rats. Modulating eNOS also affected eNOS expression, eNOS activity and NO availability after SAH. In addition, we showed hemoglobins penetrated into brain parenchyma after SAH. And hemoglobins significantly reduced the microvessel diameters at pericyte sites, due to the effects of hemoglobin inducing α-SMA expressions in cultured pericytes and brain slices via inhibiting NO/cGMP pathway. In conclusion, pericyte α-SMA phenotype mediates acute microvessel constriction after SAH possibly by hemoglobin suppressing NO/cGMP signaling pathway. Therefore, by targeting the eNOS and pericyte α-SMA phenotype, our present data may shed new light on the management of SAH patients.


Assuntos
GMP Cíclico/metabolismo , Hemoglobinas/biossíntese , Microcirculação , Óxido Nítrico/metabolismo , Pericitos/metabolismo , Fenótipo , Hemorragia Subaracnóidea/metabolismo , Hemorragia Subaracnóidea/fisiopatologia , Actinas/genética , Actinas/metabolismo , Animais , Modelos Animais de Doenças , Ativação Enzimática , Expressão Gênica , Masculino , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Ratos , Transdução de Sinais , Hemorragia Subaracnóidea/genética , Hemorragia Subaracnóidea/patologia
11.
Neuropharmacology ; 105: 361-377, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26829470

RESUMO

Neuronal hyperexcitability in the anterior cingulate cortex (ACC) is considered as one of the most important pathological changes responsible for the chronification of neuropathic pain. However, the underlying mechanisms remain elusive. In the present study, we investigated the possible mechanisms using a rat model of chronic constriction injury (CCI) to the sciatic nerve. We found a substantial decrease in hyperpolarization-activated/cyclic nucleotide-gated (HCN) currents in layer 5 pyramidal neurons (L5 PNs) in ACC slices, which dramatically increased the excitability of these neurons. This effect could be mimicked in sham slices by activating group 1 metabotropic glutamate receptors, and be blocked in CCI slices by inhibiting metabotropic glutamate receptor subtype 1 (mGluR1). Next, the inhibition of HCN currents was reversed by a protein kinase C (PKC) inhibitor, followed by a reduced neuronal hyperexcitability. Furthermore, HCN channel subtype 1 (HCN1) level was significantly reduced after CCI, whereas mGluR1 level increased. These changes were mainly observed in L5 of the ACC, where HCN1 and mGluR1 were highly colocalized. For behavioral tests, intra-ACC microinjection of mGluR1-shRNA suppressed the CCI-induced behavioral hypersensitivity, particularly thermal hyperalgesia, but not aversive behavior, and this effect was attenuated by the pre-blockade of HCN channels. Taken together, the neuronal hyperexcitability of ACC L5 PNs likely results from an upregulation of mGluR1 and a downstream pathway involving PKC activation and a downregulation of HCN1 in the early phase of neuropathic pain. These alterations may at least in part contribute to the development of behavioral hypersensitivity in CCI rats.


Assuntos
Giro do Cíngulo/efeitos dos fármacos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Canais de Potássio/efeitos dos fármacos , Receptores de AMPA/agonistas , Animais , Comportamento Animal/efeitos dos fármacos , Constrição Patológica/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Giro do Cíngulo/citologia , Hiperalgesia/tratamento farmacológico , Hiperalgesia/psicologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/agonistas , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/antagonistas & inibidores , Técnicas In Vitro , Masculino , Neuralgia/fisiopatologia , Técnicas de Patch-Clamp , Canais de Potássio/agonistas , Proteína Quinase C/antagonistas & inibidores , Células Piramidais/efeitos dos fármacos , RNA Interferente Pequeno , Ratos , Ratos Sprague-Dawley
12.
J Neurophysiol ; 113(2): 592-600, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25355958

RESUMO

Oligodendrocyte progenitor cells (OPCs) are susceptible to perinatal hypoxia ischemia brain damage (HIBD), which results in infant cerebral palsy due to the effects on myelination. The origin of OPC vulnerability in HIBD, however, remains controversial. In this study, we defined the HIBD punctate lesions by MRI diffuse excessive high signal intensity (DEHSI) in postnatal 7-day-old rats. The electrophysiological functional properties of OPCs in HIBD were recorded by patch-clamp in acute cerebral cortex slices. The slices were intracellularly injected with Lucifer yellow and immunohistochemically labeled with NG2 antibody to identify local OPCs. Passive membrane properties and K(+) channel functions in OPCs were analyzed to estimate the onset of vulnerability in HIBD. The resting membrane potential, membrane resistance, and membrane capacitance of OPCs were increased in both the gray and white matter of the cerebral cortex. OPCs in both the gray and white matter exhibited voltage-dependent K(+) currents, which consisted of the initiated rectified potassium currents (IA) and the sustained rectified currents (IK). The significant alternation in membrane resistance was influenced by the diversity of potassium channel kinetics. These findings suggest that the rectification of IA and IK channels may play a significant role in OPC vulnerability in HIBD.


Assuntos
Córtex Cerebral/fisiopatologia , Hipóxia-Isquemia Encefálica/fisiopatologia , Células-Tronco Neurais/fisiologia , Neurônios/fisiologia , Oligodendroglia/fisiologia , Canais de Potássio/metabolismo , Animais , Animais Recém-Nascidos , Membrana Celular/fisiologia , Córtex Cerebral/patologia , Modelos Animais de Doenças , Capacitância Elétrica , Feminino , Hipóxia-Isquemia Encefálica/patologia , Cinética , Imageamento por Ressonância Magnética , Masculino , Células-Tronco Neurais/patologia , Neurônios/patologia , Oligodendroglia/patologia , Técnicas de Patch-Clamp , Ratos Sprague-Dawley , Técnicas de Cultura de Tecidos
13.
Urol Oncol ; 32(1): 47.e21-8, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24140250

RESUMO

OBJECTIVE: With the notorious reputation of the vicious invasion, the bladder cancer is the most common malignant tumor of the urinary system. Inhibiting invasion through microtubule dynamics interruption has emerged as an important treatment of bladder cancer. Here we investigated the role of the cyclic adenosine monophosphate/protein kinase A (cAMP/PKA) pathway in human bladder cancer cells invasion. MATERIALS AND METHODS: With or without the treatment of various cAMP elevators, we assessed invasive and migrated capabilities of T24 and UM-UC-3, two high-grade invasive bladder cancer cell lines, using matrigel transwell inserts assay and scratch wound healing assay. The microtubule (MT) dynamics were examined by immunofluorescence and immunoblotting. Microtubule-Associated Protein 4 (MAP4) was silenced to investigate its role in tumor invasion. We also analyzed gene expression of MAP4 in 34 patients with bladder cancer using immunohistochemical staining assay. The interaction between PKA and MAP4 was examined by co-immunoprecipitation. RESULTS: We used cAMP elevators and small interfering RNA of MAP4 here, found that both of them can potently inhibit the invasion and the migration of bladder cancer cells by disrupting microtubule (MT) cytoskeleton. Consistently, the bladder cancer grade is positively correlated with the protein level of MAP4. Furthermore, we found that cAMP/PKA signaling can disrupt MT cytoskeleton by the phosphorylation of MAP4. CONCLUSION: Our results indicated that the cAMP/PKA signaling pathway might inhibit bladder cancer cell invasion by targeting MAP4-dependent microtubule dynamics, which could be exploited for the therapy of invasive bladder cancer.


Assuntos
Movimento Celular/fisiologia , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Transdução de Sinais/fisiologia , Neoplasias da Bexiga Urinária/metabolismo , Bucladesina/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Toxina da Cólera/farmacologia , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genética , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Humanos , Immunoblotting , Imuno-Histoquímica , Microscopia Confocal , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Invasividade Neoplásica , Fosforilação/efeitos dos fármacos , Ligação Proteica , Interferência de RNA , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Tubulina (Proteína)/metabolismo , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia
15.
Behav Neurosci ; 127(2): 325-9, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23398435

RESUMO

Peripheral and spinal hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels play important roles in neuropathic pain by regulating neuronal excitability. However, the participation of HCN channels in the ventral-lateral periaqueductal gray (vlPAG) during neuropathic pain states has not been clarified. To investigate the role of vlPAG HCN channels in neuropathic pain, the authors developed a chronic constriction injury (CCI) model. By using western blot analysis, they detected the upregulation of HCN1 and HCN2 channel expression at vlPAG 14 days post-CCI surgery. Subsequently, the function of these upregulated channels was verified by the intravlPAG infusion of ZD7288, a specific HCN blocker, which significantly relieved mechanical allodynia and thermal hyperalgesia in CCI animals. These results suggest that the upregulation of vlPAG HCN channels plays an important role in pain maintenance and might be a target for attenuating pain.


Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos/antagonistas & inibidores , Hiperalgesia/tratamento farmacológico , Neuralgia/tratamento farmacológico , Substância Cinzenta Periaquedutal/efeitos dos fármacos , Pirimidinas/uso terapêutico , Animais , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatologia , Neuralgia/metabolismo , Neuralgia/fisiopatologia , Medição da Dor , Substância Cinzenta Periaquedutal/metabolismo , Substância Cinzenta Periaquedutal/fisiopatologia , Pirimidinas/farmacologia , Ratos , Ratos Sprague-Dawley
16.
Brain Res ; 1500: 36-44, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23375842

RESUMO

Peripheral and spinal hyperpolarization-activated cyclic nucleotide-gated (HCN) channels play a key role in neuropathic pain by regulating neuronal excitability. HCN channels are expressed in the ventral-lateral periaqueductal gray (vlPAG), a region that is important for pain modulation. However, the role of vlPAG HCN channels in neuropathic pain remains poorly understood. In the present study, we investigated the impact of changes to vlPAG HCN channels on neural activity in neuropathic pain. First, sciatic nerve chronic constriction injury (CCI) was established as a neuropathic pain model. Then, changes in HCN channels and their influence on vlPAG neuronal activity were detected. Our results indicate that after CCI surgery the following changes occur in vlPAG neurons: the expression of HCN1 and HCN2 channels is increased, the amplitude of the hyperpolarization-activated current (Ih) is augmented and its activation curve is shifted to more positive potentials and there is an increase in the frequency of action potential (AP) firing and spontaneous EPSCs that is attenuated by ZD7288, a HCN channel blocker. In addition, forskolin, which can elevate intracellular cAMP, mimics the CCI induced changes in neuronal excitability in the vlPAG. The effects of forskolin were also reversed by ZD7288. Taken together, the present data indicate an important role for HCN channels in the vlPAG in neuropathic pain.


Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Neuralgia/metabolismo , Neurônios/metabolismo , Substância Cinzenta Periaquedutal/metabolismo , Neuropatia Ciática/metabolismo , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Canais de Cátion Regulados por Nucleotídeos Cíclicos/antagonistas & inibidores , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Neuralgia/fisiopatologia , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp , Substância Cinzenta Periaquedutal/efeitos dos fármacos , Substância Cinzenta Periaquedutal/fisiopatologia , Pirimidinas/farmacologia , Ratos , Ratos Sprague-Dawley , Neuropatia Ciática/fisiopatologia
17.
Histochem Cell Biol ; 139(4): 549-57, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23160624

RESUMO

P2X receptors are ATP-gated cationic channels composed of seven cloned subunits (P2X(1 -7)). P2X(3) homomultimer and P2X(2/3) heteromultimer receptors expressed by primary afferent dorsal root ganglion (DRG) neurons are involved in pain processing. The aim of the study was to investigate the expression of the P2X(5) receptor subunit in DRG in different species including mouse, rat, cat and guinea pig. Immunohistochemistry showed that P2X(5) receptors exhibited low levels of immunostaining in rat DRG, but high levels in mouse and guinea pig. Only a few neurons were immunoreactive for P2X(5) receptors in cat. In mouse DRG, the P2X(5) receptor was expressed largely by medium-diameter neurons (42.9 %), less in small (29.3 %) and large (27.8 %) neurons. In contrast, in the guinea pig DRG, P2X(5) receptor expression was greatest in small-diameter (42.6 %), less in medium- (36.3 %) and large-diameter (21.1 %) neurons. Colocalization experiments revealed that, in mouse DRG, 65.5, 10.9 and 27.1 % of P2X(5) receptors were immunoreactive for NF-200, CGRP and calbindin, while only a few P2X(5)-immunoreactive (IR) neurons were coexpressed with IB4 or with NOS. In guinea pig DRG, a total of 60.5 and 40.5 % of P2X(5)-IR neurons were coexpressed with IB4 or with CGRP, while 20.3 and 24.5 % of P2X(5) receptors were coexpressed with NF-200 or with NOS. Only a few P2X(5)-IR neurons were coexpressed with calbindin in guinea pig DRG. It will be of great interest to clarify the relative physiological and pathophysiological roles of P2X(5) receptors.


Assuntos
Gânglios Espinais/metabolismo , Neurônios Aferentes/metabolismo , Receptores Purinérgicos P2X5/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Calbindinas , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Gatos , Cobaias , Imuno-Histoquímica , Camundongos , Ratos , Ratos Sprague-Dawley , Receptores Purinérgicos P2X5/biossíntese , Proteína G de Ligação ao Cálcio S100/biossíntese
18.
Neurosci Lett ; 516(1): 5-8, 2012 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-22402191

RESUMO

Perinatal hypoxic-ischemic (H-I) is a major cause of brain injury in the newborn. The hippocampus is more sensitive to H-I injury than the other brain regions. It is believed that H-I brain damage causes a loss of neurons in the central nervous system. The patterns of neuronal death include apoptosis and necrosis. With regard to the responses of neurons, the neural functional changes should be earlier than the morphologic changes. The aim of the present study is to evaluate the electrophysiological characteristics and the synaptic transmission functions. Seven-day-old Sprague-Dawley rat pups were randomly divided into sham operation and H-I groups. The patch clamp, immunohistochemistry and Western blotting techniques were used to achieve this objective. The results of the study showed a decrease in neuronal excitability and a significant increase in the frequency of spontaneous excitatory postsynaptic currents and the duration of EPSCs in the CA1 pyramidal cells of H-I brain damage rats. The glutamate transporter subtype 1 (GLT-1) expression level of the hippocampal CA1 area in the H-I group was decreased compared with the control. There was no difference in the amplitude of excitatory postsynaptic currents and should be no difference in the expression of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR), N-methyl-D-aspartate receptor (NMDAR) and synaptophysin between the control and H-I brain injury group. These results revealed that changes of electrophysiological characteristics and synaptic functions occur instantly after H-I brain damage in the hippocampal pyramidal cells of neonatal rats. The failure to eliminate glutamate should be one of the important factors of excitotoxicity injury on hippocampal CA1 pyramidal cells, while neuronal excitation was not increased in the H-I brain injury model.


Assuntos
Potenciais de Ação , Hipóxia-Isquemia Encefálica/fisiopatologia , Rede Nervosa/fisiopatologia , Células Piramidais , Transmissão Sináptica , Animais , Animais Recém-Nascidos , Ratos , Ratos Sprague-Dawley
19.
Brain Inj ; 26(3): 282-90, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22372415

RESUMO

PRIMARY OBJECTIVE: This study was designed to evaluate the effect of hypobaric hypoxia (HH) on the function and expression of P2X receptors in rat hippocampus CA1 pyramidal cells. RESEARCH DESIGN: The functional changes of P2X receptors were investigated through the cell HH model and the expressional alterations of P2X receptors were observed through the animal HH model. METHODS AND PROCEDURE: P2X receptors mediated currents were recorded from the freshly dissociated CA1 pyramidal cells of 7-day-old SD rats by whole cell patch clamp recording. The expression and distribution of P2X receptors were observed through immunohistochemistry and western blot at HH 3-day and 7-day. MAIN OUTCOMES AND RESULTS: In acute HH conditions, the amplitudes of ATP evoked peak currents were decreased compared to control. The immunohistochemistry and western blot results reflected there was no change in P2X receptors expression after 3 days HH injury, while P2X receptors expression was up-regulated in response to 7 days HH injury. CONCLUSIONS: These findings supported the possibility that the function of P2X receptors was sensitive to HH damage and long-term function decrease should result in the expression increase of P2X receptors.


Assuntos
Região CA1 Hipocampal/metabolismo , Oxigenoterapia Hiperbárica , Hipóxia Encefálica/metabolismo , Células Piramidais/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Altitude , Animais , Velocidade do Fluxo Sanguíneo , Região CA1 Hipocampal/irrigação sanguínea , Região CA1 Hipocampal/fisiopatologia , Hipóxia Encefálica/fisiopatologia , Imuno-Histoquímica , Ratos , Ratos Sprague-Dawley
20.
Behav Brain Res ; 226(1): 163-70, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21933684

RESUMO

P2X(7) receptor is an important member of ATP-sensitive ionotropic P2X receptors family, which includes seven receptor subtypes (P2X(1)-P2X(7)). Recent evidence indicates that P2X(7)R participates in the onset and persistence of neuropathic pain. In tetanic stimulation of the sciatic nerve model, P2X(7)R was involved in the activation of microglia, but whether this happens in other neuropathic pain models remains unclear. In this study we used immunohistochemistry and Western blot to explore the relationship of P2X(7)R expression with microglia activation, and with mechanical allodynia and thermal hypersensitivity in the chronic constriction of the sciatic nerve (CCI) rat model. The results show that following nerve ligature, mechanical allodynia and thermal hypersensitivity were developed within 3 days (d), peaked at 14d and persisted for 21d on the injured side. P2X(7)R levels in the ipsilateral L4-6 spinal cord were increased markedly after injury and the highest levels were observed on day 14, significant difference was observed at I-IV layers of the dorsal horn. The change in P2X(7)R levels in the spinal cord was consistent with the development of mechanical allodynia and thermal hypersensitivity. Intrathecal administration of the P2X(7)R antagonist Brilliant Blue G (BBG) reversed CCI-induced mechanical allodynia and thermal hypersensitivity. Double-labeled immunofluorescence showed that P2X(7)R expression were restricted to microglia, spinal microglia were activated after nerve injury, which was inhibited by BBG. These results indicated that spinal P2X(7)R mediate microglia activation, this process may play an important role in development of mechanical allodynia and thermal hypersensitivity in CCI model.


Assuntos
Hiperalgesia/metabolismo , Microglia/metabolismo , Neuralgia/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Nervo Isquiático/lesões , Animais , Medição da Dor , Limiar da Dor/fisiologia , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/metabolismo , Medula Espinal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...