Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(8)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37109900

RESUMO

A 3D network capture substrate based on poly(lactic-co-glycolic acid) (PLGA) nanofibers was studied and successfully used for high-efficiency cancer cell capture. The arc-shaped glass micropillars were prepared by chemical wet etching and soft lithography. PLGA nanofibers were coupled with micropillars by electrospinning. Given the size effect of the microcolumn and PLGA nanofibers, a three-dimensional of micro-nanometer spatial network was prepared to form a network cell trapping substrate. After the modification of a specific anti-EpCAM antibody, MCF-7 cancer cells were captured successfully with a capture efficiency of 91%. Compared with the substrate composed of 2D nanofibers or nanoparticles, the developed 3D structure based on microcolumns and nanofibers had a greater contact probability between cells and the capture substrate, leading to a high capture efficiency. Cell capture based on this method can provide technical support for rare cells in peripheral blood detection, such as circulating tumor cells and circulating fetal nucleated red cells.

2.
ACS Appl Mater Interfaces ; 10(1): 66-74, 2018 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-29219294

RESUMO

Cell morphology and nucleus deformation are important when circulating tumor cells break away from the primary tumor and migrate to a distant organ. Cells are sensitive to the microenvironment and respond to the cell-material interfaces. We fabricated TiO2 nanorod arrays with mesoscopic micro-nano interfaces through a two-step hydrothermal reaction method to induce severe changes in cell morphology and nucleus deformation. The average size of the microscale voids was increased from 5.1 to 10.5 µm when the hydrothermal etching time was increased from 3 to 10 h, whereas the average distances between voids were decreased from 0.88 to 0.40 µm. The nucleus of the MCF-7 cells on the TiO2 nanorod substrate that was etched for 10 h exhibited a significant deformation, because of the large size of the voids and the small distance between voids. Nucleus defromation was reversible during the cells proliferate process when the cells were cultured on the mesoscopic micro-nano interface.This reversible process was regulated by combining of the uniform pressure applied by the actin cap and the localized pressure applied by the actin underneath the nucleus. Cell morphology and nucleus shape interacted with each other to adapt to the microenvironment. This mesoscopic micro-nano interface provided a new insight into the cell-biomaterial interface to investigate cell behaviors.


Assuntos
Nanotubos , Actinas , Titânio
3.
Org Biomol Chem ; 15(27): 5805-5810, 2017 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-28660941

RESUMO

An efficient solvent-free protocol for the Buchwald-Hartwig cross-coupling reaction of aryl and heteroaryl chlorides with primary and secondary amines using the Pd(dba)2/ligand 1 catalytic system has been developed. Notably, the catalytic system also efficiently catalyzed the reaction under aqueous conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...