Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 13(8): 2310-2316, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35310496

RESUMO

A paired electrolysis enabled cascade annulation that enables the efficient synthesis of highly functionalized quinoline-substituted bioactive molecules from readily available starting materials is reported. Using this methodology, two goals, namely, the direct synthesis of quinolines and the introduction of quinoline moieties to bioactive molecules, can be simultaneously achieved in one simple operation. The use of electroreduction for the activation of isatin, together with the further anodic oxidation of KI to catalytically result in a cascade annulation, highlight the unique possibilities associated with electrochemical activation methods. This transformation can tolerate a wide range of functional groups and can also be used as a functionalization tactic in pharmaceutical research as well as other areas.

2.
Chem Commun (Camb) ; 58(13): 2168-2171, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35060985

RESUMO

Electrochemical oxygen reduction reaction (ORR) is a powerful tool for introducing oxygen functional groups in synthetic chemistry. However, compared with the well-developed one-electron oxygen reduction process, the applications of two-electron oxygen reduction in electrochemical synthesis have been seldom studied. We present herein our recent progress in the oxidation of α-diazoesters to α-ketoesters by in situ generated hydrogen peroxide via a two-electron oxygen reduction approach. A diverse collection of valuable α-ketoester products was obtained with moderate to high yields under an exogenous-oxidant-free and metal catalyst-free electrochemical conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...