Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 242(Pt 3): 124910, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37217041

RESUMO

Ophiorrhiza pumila, as a folk herb belonging to the Rubiaceae family, has become a potential source of camptothecin (CPT), which is a monoterpenoid indole alkaloid with good antitumor property. However, the camptothecin content in this herb is low, and is far from meeting the increasing clinical demand. Understanding the transcriptional regulation of camptothecin biosynthesis provides an effective strategy for improvement of camptothecin yield. Previous studies have demonstrated several transcription factors that are related to camptothecin biosynthesis, while the functions of HD-ZIP members in O. pumila have not been investigated yet. In this study, 32 OpHD-ZIP transcription factor members were genome-wide identified. Phylogenetic tree showed that these OpHD-ZIP proteins are divided into four subfamilies. Based on the transcriptome data, nine OpHD-ZIP genes were shown to be predominantly expressed in O. pumila roots, which were in line with the camptothecin biosynthetic genes. Co-expression analysis showed that OpHD-ZIP7 and OpHD-ZIP20 were potentially related to the modulation of camptothecin biosynthesis. Dual-luciferase reporter assays (Dual-LUC) showed that both OpHD-ZIP7 and OpHD-ZIP20 could activate the expression of camptothecin biosynthetic genes OpIO and OpTDC. In conclusion, this study offered the promising data for exploring the roles of OpHD-ZIP transcription factors in regulating camptothecin biosynthesis.


Assuntos
Proteínas de Transporte de Cátions , Rubiaceae , Camptotecina , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Filogenia , Proteínas de Transporte de Cátions/genética , Retículo Endoplasmático/metabolismo , Zinco/metabolismo , Rubiaceae/genética
2.
J Integr Plant Biol ; 65(1): 133-149, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36194508

RESUMO

Camptothecin (CPT) is an anticancer pentacyclic quinoline alkaloid widely used to treat cancer patients worldwide. However, the biosynthetic pathway and transcriptional regulation of camptothecin are largely unknown. Ophiorrhiza pumila, the herbaceous plant from the Rubiaceae family, has emerged as a model plant for studying camptothecin biosynthesis and regulation. In this study, a high-quality reference genome of O. pumila with estimated size of ~456.90 Mb was reported, and the accumulation level of camptothecin in roots was higher than that in stems and leaves. Based on its spatial distribution in the plant, we examined gene functions and expression by combining genomics with transcriptomic analysis. Two loganic acid O-methyltransferase (OpLAMTs) were identified in strictosidine-producing plant O. pumila, and enzyme catalysis assays showed that OpLAMT1 and not OpLAMT2 could convert loganic acid into loganin. Further knock-out of OpLAMT1 expression led to the elimination of loganin and camptothecin accumulation in O. pumila hairy roots. Four key residues were identified in OpLAMT1 protein crucial for the catalytic activity of loganic acid to loganin. By co-expression network, we identified a NAC transcription factor, OpNAC1, as a candidate gene for regulating camptothecin biosynthesis. Transgenic hairy roots and biochemical assays demonstrated that OpNAC1 suppressed OpLAMT1 expression. Here, we reported on two camptothecin metabolic engineering strategies paving the road for industrial-scale production of camptothecin in CPT-producing plants.


Assuntos
Antineoplásicos Fitogênicos , Antineoplásicos , Rubiaceae , Camptotecina/farmacologia , Camptotecina/química , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Antineoplásicos/metabolismo , Plantas/metabolismo , Rubiaceae/genética , Rubiaceae/metabolismo
3.
Food Chem Toxicol ; 151: 112113, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33722602

RESUMO

Camptothecin (CPT), a well-known monoterpenoid indole alkaloid with broad-spectrum anti-cancer activity, is produced from plants and endophytes. In view of the limitations of plants as sources of camptothecin in productivity and efficiency, endophytes serve as the fast growth, high cost-effectiveness, good reproducibility, and feasible genetic manipulation, so they have the potential to meet the huge market demand of the pharmaceutical industry. In this review, we summarized the isolation, identification and fermentation of CPT-producing endophytes, as well as the biosynthesis, extraction and detection of camptothecin from endophytes. Among them, we put emphasis on increasing the production of camptothecin in endophytes through different strategies such as changing the proportion of carbon, nitrogen and phosphate source, adding the precursors, elicitors or adsorbent resin, utilizing co-culture fermentation or fermenter culture. However, cell subculture and metabolic reprogramming affect the expression of camptothecin biosynthetic genes in CPT-producing endophytes, which poses a challenge to the industrial production of camptothecin. Therefore, it will be useful to gain insights through the review of these researches and provide alternative approaches to develop economical, eco-friendly and reliable natural products.


Assuntos
Antineoplásicos Fitogênicos/biossíntese , Camptotecina/biossíntese , Endófitos/metabolismo , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Reatores Biológicos , Camptotecina/química , Camptotecina/farmacologia , Fermentação , Regulação da Expressão Gênica/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
4.
Hortic Res ; 8(1): 7, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33384421

RESUMO

The limited bioavailability of plant-derived natural products with anticancer activity poses major challenges to the pharmaceutical industry. An example of this is camptothecin, a monoterpene indole alkaloid with potent anticancer activity that is extracted at very low concentrations from woody plants. Recently, camptothecin biosynthesis has been shown to become biotechnologically amenable in hairy-root systems of the natural producer Ophiorrhiza pumila. Here, time-course expression and metabolite analyses were performed to identify novel transcriptional regulators of camptothecin biosynthesis in O. pumila. It is shown here that camptothecin production increased over cultivation time and that the expression pattern of the WRKY transcription factor encoding gene OpWRKY2 is closely correlated with camptothecin accumulation. Overexpression of OpWRKY2 led to a more than three-fold increase in camptothecin levels. Accordingly, silencing of OpWRKY2 correlated with decreased camptothecin levels in the plant. Further detailed molecular characterization by electrophoretic mobility shift, yeast one-hybrid and dual-luciferase assays showed that OpWRKY2 directly binds and activates the central camptothecin pathway gene OpTDC. Taken together, the results of this study demonstrate that OpWRKY2 acts as a direct positive regulator of camptothecin biosynthesis. As such, a feasible strategy for the over-accumulation of camptothecin in a biotechnologically amenable system is presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...