Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 11(5)2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35269452

RESUMO

Finding and constructing an osteogenic microenvironment similar to natural bone tissue has always been a frontier topic in orthopedics. We found that osteocytes are targeting cells controlling bone anabolism produced by PTH (JBMR 2017, PMID: 27704638), and osteocytes with activated Wnt signaling orchestrate bone formation and resorption (PNAS 2015, PMID: 25605937). However, methods for taking advantage of the leading role of osteocytes in bone regeneration remain unexplored. Herein, we found that the osteocytes with SKL2001-activated Wnt signaling could be an osteogenic microenvironment (SOOME) which upregulates the expression of bone transcription factor Runx2 and Bglap and promotes the differentiation of bone marrow stromal cell ST2 into osteoblasts. Interestingly, 60 µM SKL2001 treatment of osteocytic MLO-Y4 for 24 h maintained Wnt signaling activation for three days after removal, which was sufficient to induce osteoblast differentiation. Triptonide, a Wnt inhibitor, could eliminate this differentiation. Moreover, on day 5, the Wnt signaling naturally decreased to the level of the control group, indicating that this method of Wnt-signaling induction is safe to use. We quickly verified in vivo function of SOOME to a good proximation in 3D bioprinted modules composed of reciprocally printed polycaprolactone bundles (for support) and cell bundles (for bioactivity). In the cell bundles, SOOME stably supported the growth and development of ST2 cells, the 7-day survival rate was as high as 91.6%, and proliferation ability increased linearly. Similarly, SOOME greatly promoted ST2 differentiation and mineralization for 28 days. In addition, SOOME upregulated the expression of angiopoietin 1, promoted endothelial cell migration and angiogenesis, and increased node number and total length of tubes and branches. Finally, we found that the function of SOOME could be realized through the paracrine pathway. This study reveals that osteocytes with Wnt signaling activated by SKL2001 are a safe osteogenic microenvironment. Both SOOME itself and its cell-free culture supernatant can improve bioactivity for osteoblast differentiation, with composite scaffolds especially bearing application value.


Assuntos
Osteócitos , Osteogênese , Imidazóis , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Isoxazóis , Poliésteres , Via de Sinalização Wnt
2.
Cell Transplant ; 30: 9636897211053203, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34719306

RESUMO

Methionine sulfoxide reductase B1 (MsrB1) can catalyze both free and protein-bound R-methionine sulfoxides (R-MetO) to methionine (Met). It has been reported that MsrB1 plays an important role in the development of HCC and human bone osteosarcoma. However, little is known about the functions of MsrB1 in human colorectal cancer (CRC). Herein, we detected MsrB1 expression level in CRC tissue and cell lines, and investigated the effect of MsrB1 knockdown on CRC phenotypes and possible mechanisms involved in. The results showed that MsrB1 was highly expressed in both CRC tissues and cell lines, and that cell proliferation, migration and invasion were significantly inhibited, but apoptosis was increased after MsrB1 knockdown in colorectal cancer HCT116 and RKO cell lines, compared to control siRNA group. In addition, E-cadherin protein level was increased, vimentin and Snail protein were greatly decreased after knockdown of MsrB1 in cells. Furthermore, pGSK-3ß (Ser9) and ß-catenin protein levels were reduced, the promoter activity of TCF/LEF construction was inhibited after MsrB1 knockdown in cells, suggesting that GSK-3ß/ß-catenin signaling axis was involved in the tumorigenesis of CRC. In conclusion, the oncogenic role and related mechanisms of MsrB1 in CRC discovered in our work determined the potential role of MsrB1 as a biomarker and may provide a new target for clinical therapy of CRC.


Assuntos
Neoplasias Colorretais/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Metionina Sulfóxido Redutases/metabolismo , beta Catenina/metabolismo , Proliferação de Células , Humanos , Invasividade Neoplásica , Transdução de Sinais , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...