Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Parasit Vectors ; 14(1): 186, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33794979

RESUMO

BACKGROUND: Microsporidia are obligate intracellular parasites that can infect nearly all invertebrates and vertebrates, posing a threat to public health and causing large economic losses to animal industries such as those of honeybees, silkworms and shrimp. However, the global epidemiology of these pathogens is far from illuminated. METHODS: Publications on microsporidian infections were obtained from PubMed, Science Direct and Web of Science and filtered according to the Newcastle-Ottawa Quality Assessment Scale. Infection data about pathogens, hosts, geography and sampling dates were manually retrieved from the publications and screened for high quality. Prevalence rates and risk factors for different pathogens and hosts were analyzed by conducting a meta-analysis. The geographic distribution and seasonal prevalence of microsporidian infections were drawn and summarized according to sampling locations and date, respectively. RESULTS: Altogether, 287 out of 4129 publications up to 31 January 2020 were obtained and met the requirements, from which 385 epidemiological data records were retrieved and effective. The overall prevalence rates in humans, pigs, dogs, cats, cattle, sheep, nonhuman primates and fowl were 10.2% [2429/30,354; 95% confidence interval (CI) 9.2-11.2%], 39.3% (2709/5105; 95% CI 28.5-50.1%), 8.8% (228/2890; 95% CI 5.1-10.1%), 8.1% (112/1226; 95% CI 5.5-10.8%), 16.6% (2216/12,175; 95% CI 13.5-19.8%), 24.9% (1142/5967; 95% CI 18.6-31.1%), 18.5% (1388/7009; 95% CI 13.1-23.8%) and 7.8% (725/9243; 95% CI 6.4-9.2%), respectively. The higher prevalence in pigs suggests that routine detection of microsporidia in animals should be given more attention, considering their potential roles in zoonotic disease. The highest rate was detected in water, 58.5% (869/1351; 95% CI 41.6-75.5%), indicating that water is an important source of infections. Univariate regression analysis showed that CD4+ T cell counts and the living environment are significant risk factors for humans and nonhuman primates, respectively. Geographically, microsporidia have been widely found in 92 countries, among which Northern Europe and South Africa have the highest prevalence. In terms of seasonality, the most prevalent taxa, Enterocytozoon bieneusi and Encephalitozoon, display different prevalence trends, but no significant difference between seasons was observed. In addition to having a high prevalence, microsporidia are extremely divergent because 728 genotypes have been identified in 7 species. Although less investigated, microsporidia coinfections are more common with human immunodeficiency virus and Cryptosporidium than with other pathogens. CONCLUSIONS: This study provides the largest-scale meta-analysis to date on microsporidia prevalence in mammals, birds and water worldwide. The results suggest that microsporidia are highly divergent, widespread and prevalent in some animals and water and should be further investigated to better understand their epidemic features.


Assuntos
Aves/parasitologia , Saúde Global , Mamíferos/parasitologia , Microsporídios/isolamento & purificação , Microsporidiose/epidemiologia , Água/parasitologia , Zoonoses/epidemiologia , Animais , Genótipo , Geografia , Humanos , Microsporídios/classificação , Microsporídios/genética , Microsporídios/patogenicidade , Prevalência , Fatores de Risco , Zoonoses/parasitologia
2.
Int J Mol Sci ; 21(16)2020 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-32823802

RESUMO

The genus Brassica contains several economically important crops, including rapeseed (Brassica napus, 2n = 38, AACC), the second largest source of seed oil and protein meal worldwide. However, research in rapeseed is hampered because it is complicated and time-consuming for researchers to access different types of expression data. We therefore developed the Brassica Expression Database (BrassicaEDB) for the research community. In the current BrassicaEDB, we only focused on the transcriptome level in rapeseed. We conducted RNA sequencing (RNA-Seq) of 103 tissues from rapeseed cultivar ZhongShuang11 (ZS11) at seven developmental stages (seed germination, seedling, bolting, initial flowering, full-bloom, podding, and maturation). We determined the expression patterns of 101,040 genes via FPKM analysis and displayed the results using the eFP browser. We also analyzed transcriptome data for rapeseed from 70 BioProjects in the SRA database and obtained three types of expression level data (FPKM, TPM, and read counts). We used this information to develop the BrassicaEDB, including "eFP", "Treatment", "Coexpression", and "SRA Project" modules based on gene expression profiles and "Gene Feature", "qPCR Primer", and "BLAST" modules based on gene sequences. The BrassicaEDB provides comprehensive gene expression profile information and a user-friendly visualization interface for rapeseed researchers. Using this database, researchers can quickly retrieve the expression level data for target genes in different tissues and in response to different treatments to elucidate gene functions and explore the biology of rapeseed at the transcriptome level.


Assuntos
Brassica/genética , Bases de Dados Genéticas , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica , Estatística como Assunto , Interface Usuário-Computador
3.
Biosystems ; 168: 1-7, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29715506

RESUMO

Photomorphogenesis and heat shock are critical biological processes of plants. A recent research constructed the transcriptional regulatory networks (TRNs) of Arabidopsis thaliana during these processes using DNase-seq. In this study, by strong decomposition, we revealed that each of these TRNs can be represented as a similar bowtie structure with only one non-trivial and distinct strong component. We further identified distinct patterns of variation of a few light-related genes in these bowtie structures during photomorphogenesis. These results suggest that bowtie structure may be a common property of TRNs of plants, and distinct variation patterns of genes in bowtie structures of TRNs during biological processes may reflect distinct functions. Overall, our study provides an insight into the molecular mechanisms underlying photomorphogenesis and heat shock, and emphasizes the necessity to investigate the strong connectivity structures while studying TRNs.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Redes Reguladoras de Genes , Morfogênese , Elementos Reguladores de Transcrição , Arabidopsis/fisiologia , Arabidopsis/efeitos da radiação , Desoxirribonuclease I/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Temperatura Alta , Estresse Fisiológico , Termotolerância , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...