Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; 45(12): e2400019, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38544358

RESUMO

Using molecular dynamics simulations, this study investigates the equilibrium properties and flow behaviors of entangled polymer nanoparticle composites (PNCs) within a nanotube. The results show that the density distribution of nanoparticles (NPs), displacement of polymer chains and NPs, and the moduli of PNCs remain relatively unaffected when NP volume fractions (ΦN) ≤0.10. However, the flow behavior of entangled PNCs deviates from the ideal parabolic profile seen in unentangled PNCs, displaying plug-like flow characteristics with a significant platform region, indicating the presence of shear bands. Interestingly, entangled PNCs at intermediate ΦN values undergo a significant alteration in NP distribution under steady flow, resulting in notable NP aggregation. At ΦN = 0.30, a distinct change in the static structure of PNCs occurs, reducing the equilibrium distance between neighboring NPs. Consequently, the motion of both polymer chains and NPs becomes restricted, leading to an increase in the moduli of PNCs resembling solid-like behavior. Additionally, the entangled PNCs experience a complete absence of flow, indicating the entry into a jamming state. This study contributes to the understanding of PNCs flow behavior and provides insights into fundamental aspects and practical implications of PNCs.


Assuntos
Simulação de Dinâmica Molecular , Nanopartículas , Nanotubos , Polímeros , Polímeros/química , Nanopartículas/química , Nanotubos/química , Tamanho da Partícula
2.
ACS Macro Lett ; 10(12): 1517-1523, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-35549139

RESUMO

Using molecular dynamics simulation, we study shear banding of entangled polymer melts under a steady shear. The steady shear stress vs shear rate curve exhibits a plateau spanning nearly two decades of shear rates in which shear banding is observed, and the steady shear stress remains unchanged after switching the shear rates halfway in the range of shear rates within the plateau region. In addition, we find strong correlation in the location of the shear bands between different shear rates starting from the same microstate configurations at equilibrium, which suggests the importance of the inherent structural heterogeneity in the entangled polymer network for shear banding. Furthermore, for the steady shear bands persisting to the longest simulated time of 9.0τd0 (disengagement time), the shear rate in the slow band and the relative proportion of the bands do not change very much with the increase of imposed shear rate, but the shear rate in the fast band increases approximately in proportion to the imposed shear rates, in contradiction to the lever rule.


Assuntos
Simulação de Dinâmica Molecular , Polímeros , Polímeros/química , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...