Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 12(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36364666

RESUMO

Hafnium oxide (HfO2) thin film has remarkable physical and chemical properties, which makes it useful for a variety of applications. In this work, HfO2 films were prepared on silicon through plasma enhanced atomic layer deposition (PEALD) at various substrate temperatures. The growth per cycle, structural, morphology and crystalline properties of HfO2 films were measured by spectroscopic ellipsometer, grazing-incidence X-ray diffraction (GIXRD), X-ray reflectivity (XRR), field-emission scanning electron microscopy, atomic force microscopy and x-ray photoelectron spectroscopy. The substrate temperature dependent electrical properties of PEALD-HfO2 films were obtained by capacitance-voltage and current-voltage measurements. GIXRD patterns and XRR investigations show that increasing the substrate temperature improved the crystallinity and density of HfO2 films. The crystallinity of HfO2 films has a major effect on electrical properties of the films. HfO2 thin film deposited at 300 °C possesses the highest dielectric constant and breakdown electric field.

2.
Nanomaterials (Basel) ; 12(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35564219

RESUMO

Amorphous Gallium oxide (Ga2O3) thin films were grown by plasma-enhanced atomic layer deposition using O2 plasma as reactant and trimethylgallium as a gallium source. The growth rate of the Ga2O3 films was about 0.6 Å/cycle and was acquired at a temperature ranging from 80 to 250 °C. The investigation of transmittance and the adsorption edge of Ga2O3 films prepared on sapphire substrates showed that the band gap energy gradually decreases from 5.04 to 4.76 eV with the increasing temperature. X-ray photoelectron spectroscopy (XPS) analysis indicated that all the Ga2O3 thin films showed a good stoichiometric ratio, and the atomic ratio of Ga/O was close to 0.7. According to XPS analysis, the proportion of Ga3+ and lattice oxygen increases with the increase in temperature resulting in denser films. By analyzing the film density from X-ray reflectivity and by a refractive index curve, it was found that the higher temperature, the denser the film. Atomic force microscopic analysis showed that the surface roughness values increased from 0.091 to 0.187 nm with the increasing substrate temperature. X-ray diffraction and transmission electron microscopy investigation showed that Ga2O3 films grown at temperatures from 80 to 200 °C were amorphous, and the Ga2O3 film grown at 250 °C was slightly crystalline with some nanocrystalline structures.

3.
Opt Express ; 27(6): 7945-7954, 2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-31052620

RESUMO

We propose a non-contact measurement method for determining two-dimensional (2D) temperature distribution of light-emitting diodes (LEDs). This method is based on both micro-hyperspectral imaging technology and reflected light method, owning merits of both high efficiency and high spatial resolution. Blue and green bare LEDs are used as LED under test, while red and near-infrared LEDs provide incident light to avoid spectral overlapping so as to reduce measurement error. During data processing, the convolution linear filtering algorithm is employed to improve the measurement accuracy. This proposed method is compared with the micro-thermocouple and infrared thermal imaging, with their respective comparison results in fairly good agreements. For spatial resolution of 2D temperature distribution, this method increases at least one order of magnitude compared with the thermal imaging method.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...