Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37425719

RESUMO

All organisms have evolved to respond to injury. Cell behaviors like proliferation, migration, and invasion replace missing cells and close wounds. However, the role of other wound-induced cell behaviors is not understood, including the formation of syncytia (multinucleated cells). Wound-induced epithelial syncytia were first reported around puncture wounds in post-mitotic Drosophila epidermal tissues, but have more recently been reported in mitotically competent tissues such as the Drosophila pupal epidermis and zebrafish epicardium. The presence of wound-induced syncytia in mitotically active tissues suggests that syncytia offer adaptive benefits, but it is unknown what those benefits are. Here, we use in vivo live imaging to analyze wound-induced syncytia in mitotically competent Drosophila pupae. We find that almost half the epithelial cells near a wound fuse to form large syncytia. These syncytia use several routes to speed wound repair: they outpace diploid cells to complete wound closure; they reduce cell intercalation during wound closure; and they pool the resources of their component cells to concentrate them toward the wound. In addition to wound healing, these properties of syncytia are likely to contribute to their roles in development and pathology.

2.
Biochem Soc Trans ; 50(5): 1389-1402, 2022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36305642

RESUMO

Advances in public health have nearly doubled life expectancy over the last century, but this demographic shift has also changed the landscape of human illness. Today, chronic and age-dependent diseases dominate the leading causes of morbidity and mortality worldwide. Targeting the underlying molecular, genetic and cell biological drivers of the aging process itself appears to be an increasingly viable strategy for developing therapeutics against these diseases of aging. Towards this end, one of the most exciting developments in cell biology over the last decade is the explosion of research into organelle contact sites and related mechanisms of inter-organelle communication. Identification of the molecular mediators of inter-organelle tethering and signaling is now allowing the field to investigate the consequences of aberrant organelle interactions, which frequently seem to correlate with age-onset pathophysiology. This review introduces the major cellular roles for inter-organelle interactions, including the regulation of organelle morphology, the transfer of ions, lipids and other metabolites, and the formation of hubs for nutrient and stress signaling. We explore how these interactions are disrupted in aging and present findings that modulation of inter-organelle communication is a promising avenue for promoting longevity. Through this review, we propose that the maintenance of inter-organelle interactions is a pillar of healthy aging. Learning how to target the cellular mechanisms for sensing and controlling inter-organelle communication is a key next hurdle for geroscience.


Assuntos
Envelhecimento , Organelas , Humanos , Envelhecimento/metabolismo , Longevidade , Membranas Mitocondriais , Organelas/metabolismo , Comunicação Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...