Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rapid Commun Mass Spectrom ; 38(1): e9650, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38073197

RESUMO

The analysis of the nitrogen (N) isotopic composition of organic matter bound to fossil biomineral structures (BB-δ15 N) using the oxidation-denitrifier (O-D) method provides a novel tool to study past changes in N cycling processes. METHODS: We report a set of methodological improvements to the O-D method, including (a) a method for sealing the reaction vials in which the oxidation of organic N to NO3 - takes place, (b) a recipe for bypassing the pH adjustment step before the bacterial conversion of NO3 - to N2 O, and (c) a method for storing recrystallized dipotassium peroxodisulfate (K2 S2 O8 ) under Ar atmosphere. RESULTS: The new sealing method eliminates the occasional contamination and vial breakage that occurred previously while increasing sample throughput. The protocol for bypassing pH adjustment does not affect BB-δ15 N, and it significantly reduces the processing time. Storage of K2 S2 O8 reagent under Ar atmosphere produces stable oxidation blanks over more than 3.5 years. We report analytical blanks, accuracy, and precision for this methodology from eight users over the course of ~3.5 years of analyses at the Max Planck Institute for Chemistry. Our method produces analytical blanks characterized by low N content (0.30 ± 0.13 nmol N, 1σ, n = 195) and stable δ15 N (-2.20 ± 3.13‰, n = 195). The analysis of reference amino acid standards USGS 40 and USGS 65 indicates an overall accuracy of -0.23 ± 0.35‰ (1σ, n = 891). The analysis of in-house fossil standards gives similar analytical precision (1σ) across a range of BB-δ15 N values and biominerals: zooxanthellate coral standard PO-1 (6.08 ± 0.21‰, n = 267), azooxanthellate coral standard LO-1 (10.20 ± 0.28‰, n = 258), foraminifera standard MF-1 (5.92 ± 0.28‰, n = 243), and tooth enamel AG-Lox (4.06 ± 0.49‰, n = 78). CONCLUSIONS: The methodological improvements significantly increase sample throughput without compromising analytical precision or accuracy down to 1 nmol of N.

2.
Environ Sci Technol ; 48(11): 6168-76, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24810838

RESUMO

Formation and evolution of secondary organic aerosols (SOA) from biogenic VOCs influences the Earth's radiative balance. We have examined the photo-oxidation and aging of boreal terpene mixtures in the SAPHIR simulation chamber. Changes in thermal properties and chemical composition, deduced from mass spectrometric measurements, were providing information on the aging of biogenic SOA produced under ambient solar conditions. Effects of precursor mixture, concentration, and photochemical oxidation levels (OH exposure) were evaluated. OH exposure was found to be the major driver in the long term photochemical transformations, i.e., reaction times of several hours up to days, of SOA and its thermal properties, whereas the initial concentrations and terpenoid mixtures had only minor influence. The volatility distributions were parametrized using a sigmoidal function to determine TVFR0.5 (the temperature yielding a 50% particle volume fraction remaining) and the steepness of the volatility distribution. TVFR0.5 increased by 0.3±0.1% (ca. 1 K), while the steepness increased by 0.9±0.3% per hour of 1×10(6) cm(-3) OH exposure. Thus, aging reduces volatility and increases homogeneity of the vapor pressure distribution, presumably because highly volatile fractions become increasingly susceptible to gas phase oxidation, while less volatile fractions are less reactive with gas phase OH.


Assuntos
Poluentes Atmosféricos/química , Terpenos/química , Aerossóis/análise , Aerossóis/química , Poluentes Atmosféricos/análise , Gases/química , Oxirredução , Processos Fotoquímicos , Terpenos/análise , Volatilização
3.
Nature ; 506(7489): 476-9, 2014 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-24572423

RESUMO

Forests emit large quantities of volatile organic compounds (VOCs) to the atmosphere. Their condensable oxidation products can form secondary organic aerosol, a significant and ubiquitous component of atmospheric aerosol, which is known to affect the Earth's radiation balance by scattering solar radiation and by acting as cloud condensation nuclei. The quantitative assessment of such climate effects remains hampered by a number of factors, including an incomplete understanding of how biogenic VOCs contribute to the formation of atmospheric secondary organic aerosol. The growth of newly formed particles from sizes of less than three nanometres up to the sizes of cloud condensation nuclei (about one hundred nanometres) in many continental ecosystems requires abundant, essentially non-volatile organic vapours, but the sources and compositions of such vapours remain unknown. Here we investigate the oxidation of VOCs, in particular the terpene α-pinene, under atmospherically relevant conditions in chamber experiments. We find that a direct pathway leads from several biogenic VOCs, such as monoterpenes, to the formation of large amounts of extremely low-volatility vapours. These vapours form at significant mass yield in the gas phase and condense irreversibly onto aerosol surfaces to produce secondary organic aerosol, helping to explain the discrepancy between the observed atmospheric burden of secondary organic aerosol and that reported by many model studies. We further demonstrate how these low-volatility vapours can enhance, or even dominate, the formation and growth of aerosol particles over forested regions, providing a missing link between biogenic VOCs and their conversion to aerosol particles. Our findings could help to improve assessments of biosphere-aerosol-climate feedback mechanisms, and the air quality and climate effects of biogenic emissions generally.


Assuntos
Aerossóis/química , Modelos Químicos , Compostos Orgânicos Voláteis/química , Aerossóis/análise , Aerossóis/metabolismo , Atmosfera/química , Monoterpenos Bicíclicos , Clima , Ecossistema , Finlândia , Gases/análise , Gases/química , Monoterpenos/química , Oxirredução , Ozônio/química , Tamanho da Partícula , Árvores/metabolismo , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/metabolismo , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...