Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37047316

RESUMO

Dendrites are the primary points of sensory or synaptic input to a neuron and play an essential role in synaptic integration and neural function. Despite the functional importance of dendrites, relatively less is known about the underlying mechanisms regulating cell type-specific dendritic patterning. Herein, we have dissected the functional roles of a previously uncharacterized gene, CG3995, in cell type-specific dendritic development in Drosophila melanogaster. CG3995, which we have named bedwarfed (bdwf), encodes a zinc-finger BED-type protein that is required for proportional growth and branching of dendritic arbors. It also exhibits nucleocytoplasmic expression and functions in both transcriptional and translational cellular pathways. At the transcriptional level, we demonstrate a reciprocal regulatory relationship between Bdwf and the homeodomain transcription factor (TF) Cut. We show that Cut positively regulates Bdwf expression and that Bdwf acts as a downstream effector of Cut-mediated dendritic development, whereas overexpression of Bdwf negatively regulates Cut expression in multidendritic sensory neurons. Proteomic analyses revealed that Bdwf interacts with ribosomal proteins and disruption of these proteins resulted in phenotypically similar dendritic hypotrophy defects as observed in bdwf mutant neurons. We further demonstrate that Bdwf and its ribosomal protein interactors are required for normal microtubule and F-actin cytoskeletal architecture. Finally, our findings reveal that Bdwf is required to promote protein translation and ribosome trafficking along the dendritic arbor. These findings shed light on the complex, combinatorial, and multi-functional roles of transcription factors (TFs) in directing the diversification of cell type-specific dendritic development.


Assuntos
Proteínas de Drosophila , Fatores de Transcrição , Animais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Proteômica , Zinco/metabolismo , Dendritos/metabolismo , Proteínas de Homeodomínio/genética , Células Receptoras Sensoriais/metabolismo
2.
bioRxiv ; 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36824896

RESUMO

Dendrites are the primary points of sensory or synaptic inputs to a neuron and play an essential role in synaptic integration and neural function. Despite the functional importance of dendrites, relatively less is known about the underlying mechanisms regulating cell-type specific dendritic patterning. Herein, we have dissected functional roles of a previously uncharacterized gene, CG3995 , in cell-type specific dendritic development in Drosophila melanogaster . CG3995 , which we have named bedwarfed ( bdwf ), encodes a zinc-finger BED-type protein which is required for proportional growth and branching of dendritic arbors, exhibits nucleocytoplasmic expression, and functions in both transcriptional and translational cellular pathways. At the transcriptional level, we demonstrate a reciprocal regulatory relationship between Bdwf and the homeodomain transcription factor (TF) Cut. We show that Cut positively regulates Bdwf expression and that Bdwf acts as a downstream effector of Cut-mediated dendritic development, whereas overexpression of Bdwf negatively regulates Cut expression in multidendritic sensory neurons. Proteomic analyses revealed that Bdwf interacts with ribosomal proteins and disruption of these proteins produced phenotypically similar dendritic hypotrophy defects as observed in bdwf mutant neurons. We further demonstrate that Bdwf and its ribosomal protein interactors are required for normal microtubule and F-actin cytoskeletal architecture. Finally, our findings reveal that Bdwf is required to promote protein translation and ribosome trafficking along the dendritic arbor. Taken together, these results provide new insights into the complex, combinatorial and multi-functional roles of transcription factors (TFs) in directing diversification of cell-type specific dendritic development.

3.
Neurobiol Aging ; 98: 78-87, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33249376

RESUMO

The present study investigated the impact of advanced age on morphine modulation of persistent inflammatory pain in male and female rats. The impact of age, sex, and pain on µ-opioid receptor (MOR) expression and binding in the ventrolateral periaqueductal gray (vlPAG) was also examined using immunohistochemistry and receptor autoradiography. Intraplantar administration of complete Freund's adjuvant induced comparable levels of edema and hyperalgesia in adult (2-3 mos) and aged (16-18 mos) male and female rats. Morphine potency was highest in adult males, with a greater than two-fold increase in morphine EC50 observed in adult versus aged males (3.83 mg/kg vs. 10.16 mg/kg). Adult and aged female rats also exhibited significantly higher EC50 values (7.76 mg/kg and 8.74 mg/kg, respectively) than adult males. The upward shift in EC50 from adult to aged males was paralleled by a reduction in vlPAG MOR expression and binding. The observed age-related reductions in morphine potency and vlPAG MOR expression and binding have significant implications in pain management in the aged population.


Assuntos
Envelhecimento/metabolismo , Envelhecimento/fisiologia , Hiperalgesia/metabolismo , Mesencéfalo/metabolismo , Morfina/metabolismo , Receptores Opioides mu/metabolismo , Envelhecimento/genética , Animais , Feminino , Expressão Gênica , Masculino , Morfina/farmacologia , Manejo da Dor , Ligação Proteica , Ratos , Receptores Opioides mu/genética , Caracteres Sexuais
5.
J Neuroinflammation ; 17(1): 221, 2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32703230

RESUMO

BACKGROUND: Cardiovascular diseases, including heart failure, are the most common cause of death globally. Recent studies support a high degree of comorbidity between heart failure and cognitive and mood disorders resulting in memory loss, depression, and anxiety. While neuroinflammation in the hypothalamic paraventricular nucleus contributes to autonomic and cardiovascular dysregulation in heart failure, mechanisms underlying cognitive and mood disorders in this disease remain elusive. The goal of this study was to quantitatively assess markers of neuroinflammation (glial morphology, cytokines, and A1 astrocyte markers) in the central amygdala, a critical forebrain region involved in emotion and cognition, and to determine its time course and correlation to disease severity during the progression of heart failure. METHODS: We developed and implemented a comprehensive microglial/astrocyte profiler for precise three-dimensional morphometric analysis of individual microglia and astrocytes in specific brain nuclei at different time points during the progression of heart failure. To this end, we used a well-established ischemic heart failure rat model. Morphometric studies were complemented with quantification of various pro-inflammatory cytokines and A1/A2 astrocyte markers via qPCR. RESULTS: We report structural remodeling of central amygdala microglia and astrocytes during heart failure that affected cell volume, surface area, filament length, and glial branches, resulting overall in somatic swelling and deramification, indicative of a change in glial state. These changes occurred in a time-dependent manner, correlated with the severity of heart failure, and were delayed compared to changes in the hypothalamic paraventricular nucleus. Morphometric changes correlated with elevated mRNA levels of pro-inflammatory cytokines and markers of reactive A1-type astrocytes in the paraventricular nucleus and central amygdala during heart failure. CONCLUSION: We provide evidence that in addition to the previously described hypothalamic neuroinflammation implicated in sympathohumoral activation during heart failure, microglia, and astrocytes within the central amygdala also undergo structural remodeling indicative of glial shifts towards pro-inflammatory phenotypes. Thus, our studies suggest that neuroinflammation in the amygdala stands as a novel pathophysiological mechanism and potential therapeutic target that could be associated with emotional and cognitive deficits commonly observed at later stages during the course of heart failure.


Assuntos
Astrócitos/patologia , Núcleo Central da Amígdala/patologia , Insuficiência Cardíaca/complicações , Microglia/patologia , Núcleo Hipotalâmico Paraventricular/patologia , Animais , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Masculino , Microscopia Confocal/métodos , Ratos , Ratos Wistar
6.
Eur J Pain ; 24(8): 1517-1536, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32446289

RESUMO

BACKGROUND: Unilateral injection of Complete Freund's Adjuvant (CFA) into the intra-plantar surface of the rodent hindpaw elicits chronic inflammation and hyperalgesia in the ipsilateral hindlimb. Mechanisms contributing to this hyperalgesia may act over multiple time courses and can include changes in ion channel expression and post-translational SUMOylation. Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels mediate the hyperpolarization-activated current, Ih . An HCN2-mediated increase in C-nociceptor Ih contributes to mechanical hyperalgesia in the CFA model of inflammatory pain. Changes in HCN2 post-translational SUMOylation and protein expression have not been systematically documented for a given dorsal root ganglia (DRG) throughout the time course of inflammation. METHODS: This study examined HCN2 protein expression and post-translational SUMOylation in a rat model of CFA-induced hindpaw inflammation. L5 DRG cryosections were used in immunohistochemistry experiments and proximity ligation assays to investigate HCN2 expression and SUMOylation, respectively, on days 1 and 3 post-CFA. RESULTS: Unilateral CFA injection elicited a significant bilateral increase in HCN2 staining intensity in small diameter DRG neurons on day 1 post-CFA, and a significant bilateral increase in the number of small neurons expressing HCN2 but not staining intensity on day 3 post-CFA. HCN2 channels were hyper-SUMOylated in small diameter neurons of ipsilateral relative to contralateral DRG on days 1 and 3 post-CFA. CONCLUSIONS: Unilateral CFA injection elicits unilateral mechanical hyperalgesia, a bilateral increase in HCN2 expression and a unilateral increase in post-translational SUMOylation. This suggests that enhanced HCN2 expression in L5 DRG is not sufficient for mechanical hyperalgesia in the early stages of inflammation and that hyper-SUMOylation of HCN2 channels may also be necessary. SIGNIFICANCE: Nociceptor HCN2 channels mediate an increase in Ih that is necessary for mechanical hyperalgesia in a CFA model of chronic pain, but the mechanisms producing the increase in nociceptor Ih have not been resolved. The data presented here suggest that the increase in Ih during the early stages of inflammation may be mediated by an increase in HCN2 protein expression and post-translational SUMOylation.


Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos , Sumoilação , Animais , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Gânglios Espinais/metabolismo , Hiperalgesia/induzido quimicamente , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Inflamação/induzido quimicamente , Nucleotídeos Cíclicos , Ratos
7.
J Cell Sci ; 126(Pt 20): 4732-45, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23902691

RESUMO

Dendrite development is crucial in the formation of functional neural networks. Recent studies have provided insights into the involvement of secretory transport in dendritogenesis, raising the question of how the secretory pathway is controlled to direct dendritic elaboration. Here, we identify a functional link between transcriptional regulatory programs and the COPII secretory machinery in driving dendrite morphogenesis in Drosophila dendritic arborization (da) sensory neurons. MARCM analyses and gain-of-function studies reveal cell-autonomous requirements for the COPII coat protein Sec31 in mediating da neuron dendritic homeostasis. We demonstrate that the homeodomain protein Cut transcriptionally regulates Sec31 in addition to other components of COPII secretory transport, to promote dendrite elaboration, accompanied by increased satellite secretory endoplasmic reticulum (ER) and Golgi outposts primarily localized to dendritic branch points. We further establish a novel functional role for the transcription factor CrebA in regulating dendrite development and show that Cut initiates a gene expression cascade through CrebA that coordinately affects the COPII machinery to mediate dendritic morphology.


Assuntos
Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Dendritos/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila/fisiologia , Animais , Dendritos/genética , Dendritos/metabolismo , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento , Transporte Proteico , Via Secretória , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...