Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genet Resour Crop Evol ; 71(6): 2435-2448, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39026943

RESUMO

Breeding for host resistance is the most efficient and environmentally safe method to curb the spread of fusarium ear rot (FER). However, conventional breeding for resistance to FER is hampered by the complex polygenic nature of this trait, which is highly influenced by environmental conditions. This study aimed to identify genomic regions, single nucleotide polymorphisms (SNPs), and putative candidate genes associated with FER resistance as well as candidate metabolic pathways and pathway genes involved in it. A panel of 151 tropical inbred maize lines were used to assess the genetic architecture of FER resistance over two seasons. During the study period, seven SNPs associated with FER resistance were identified on chromosomes 1, 2, 4, 5, and 9, accounting for 4-11% of the phenotypic variance. These significant markers were annotated into four genes. Seven significant metabolic pathways involved in FER resistance were identified using the Pathway Association Study Tool, the most significant being the superpathway of the glyoxylate cycle. Overall, this study confirmed that resistance to FER is indeed a complex mechanism controlled by several small to medium-effect loci. Our findings may contribute to fast-tracking the efforts to develop disease-resistant maize lines through marker-assisted selection. Supplementary Information: The online version contains supplementary material available at 10.1007/s10722-023-01793-4.

2.
Plant Mol Biol Report ; 41(2): 209-217, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37159650

RESUMO

The use of molecular markers allows for precise estimates of genetic diversity, which is an important parameter that enables breeders to select parental lines and designing breeding systems. We assessed the level of genetic diversity and population structure in a panel of 151 tropical maize inbred lines using 10,940 SNP (single nucleotide polymorphism) markers generated through the DArTseq genotyping platform. The average gene diversity was 0.39 with expected heterozygosity ranging from 0.00 to 0.84, and a mean of 0.02. Analysis of molecular variance showed that 97% of allelic diversity was attributed to individual inbred lines within the populations while only 3% was distributed among the populations. Both neighbor-joining clustering and STRUCTURE analysis classified the inbred lines into four major groups. The crosses that involve inbred lines from most divergent subgroups are expected to generate maximum heterosis and produce wide variation. The results will be beneficial for breeders to better understand and exploit the genetic diversity available in the set of maize inbred lines we studied. Supplementary Information: The online version contains supplementary material available at 10.1007/s11105-022-01358-2.

3.
Front Plant Sci ; 12: 651992, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34234794

RESUMO

Achieving food security for an ever-increasing human population requires faster development of improved varieties. To this end, assessment of genetic gain for key traits is important to inform breeding processes. Despite the improvements made to increase production and productivity of cassava in Uganda at research level, there has been limited effort to quantify associated genetic gains. Accordingly, a study was conducted in Uganda to assess whether or not genetic improvement was evident in selected cassava traits using cassava varieties that were released from 1940 to 2019. Thirty-two varieties developed during this period, were evaluated simultaneously in three major cassava production zones; central (Namulonge), eastern (Serere), and northern (Loro). Best linear unbiased predictors (BLUPs) of the genotypic value for each clone were obtained across environments and regressed on order of release year to estimate annual genetic gains. We observed that genetic trends were mostly quadratic. On average, cassava mosaic disease (CMD) resistance increased by 1.9% per year, while annual genetic improvements in harvest index (0.0%) and fresh root yield (-5 kg per ha or -0.03% per ha) were non-substantial. For cassava brown streak disease (CBSD) resistance breeding which was only initiated in 2003, average annual genetic gains for CBSD foliar and CBSD root necrosis resistances were 2.3% and 1.5%, respectively. It's evident that cassava breeding has largely focused on protecting yield against diseases. This underpins the need for simultaneous improvement of cassava for disease resistance and high yield for the crop to meet its current and futuristic demands for food and industry.

4.
Int J Genomics ; 2021: 7016712, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33532486

RESUMO

Sorghum (Sorghum bicolor (L.) Moench) is an important food crop in semi-arid tropics. The crop grain yield ranges from 0.5 t/ha to 0.8 t/ha compared to potential yields of 10 t/ha. The African stem borer Busseola fusca Fuller (Noctuidae) and the spotted stem borer Chilo partellus Swinhoe (Crambidae), are among the most economically important insect pests of sorghum. The two borers can cause 15% - 80% grain yield loss in sorghum. Mapping of QTLs associated with resistance traits to the two stem borers is important towards marker-assisted breeding. The objective of this study was to map QTLs associated with resistance traits to B. fusca and C. partellus in sorghum. 243 F9:10 sorghum RILs derived from ICSV 745 (S) and PB 15520-1 (R) were selected for the study with 4,955 SNP markers. The RILs were evaluated in three sites. Data was collected on leaf feeding, deadheart, exit holes, stem tunnels, leaf toughness, seedling vigour, bloom waxiness, and leaf glossiness. ANOVA for all the traits was done using Genstat statistical software. Insect damage traits and morphological traits were correlated using Pearson's correlation coefficients. Genetic mapping was done using JoinMap 4 software, while QTL analysis was done using PLABQTL software. A likelihood odds ratio (LOD) score of 3.0 was used to declare linkage. Joint analyses across borer species and sites revealed 4 QTLs controlling deadheart formation; 6 controlling leaf feeding damage; 5 controlling exit holes and stem tunneling damages; 2 controlling bloom waxiness, leaf glossiness, and seedling vigour; 4 conditioning trichome density; and 6 conditioning leaf toughness. Joint analyses for B. fusca and C. partellus further revealed that marker CS132-2 colocalised for leaf toughness and stem tunneling traits on QTLs 1 and 2, respectively; thus, the two traits can be improved using the same linked marker. This study recommended further studies to identify gene(s) underlying the mapped QTLs.

5.
Plants (Basel) ; 10(1)2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33374402

RESUMO

Genomic selection (GS) can accelerate variety improvement when training set (TS) size and its relationship with the breeding set (BS) are optimized for prediction accuracies (PAs) of genomic prediction (GP) models. Sixteen GP algorithms were run on phenotypic best linear unbiased predictors (BLUPs) and estimators (BLUEs) of resistance to both fall armyworm (FAW) and maize weevil (MW) in a tropical maize panel. For MW resistance, 37% of the panel was the TS, and the BS was the remainder, whilst for FAW, random-based training sets (RBTS) and pedigree-based training sets (PBTSs) were designed. PAs achieved with BLUPs varied from 0.66 to 0.82 for MW-resistance traits, and for FAW resistance, 0.694 to 0.714 for RBTS of 37%, and 0.843 to 0.844 for RBTS of 85%, and these were at least two-fold those from BLUEs. For PBTS, FAW resistance PAs were generally higher than those for RBTS, except for one dataset. GP models generally showed similar PAs across individual traits whilst the TS designation was determinant, since a positive correlation (R = 0.92***) between TS size and PAs was observed for RBTS, and for the PBTS, it was negative (R = 0.44**). This study pioneered the use of GS for maize resistance to insect pests in sub-Saharan Africa.

6.
Front Plant Sci ; 9: 895, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30026746

RESUMO

Combinatorial insect attacks on maize leaves, stems, and kernels cause significant yield losses and mycotoxin contaminations. Several small effect quantitative trait loci (QTL) control maize resistance to stem borers and storage pests and are correlated with secondary metabolites. However, efficient use of QTL in molecular breeding requires a synthesis of the available resistance information. In this study, separate meta-analyses of QTL of maize response to stem borers and storage pests feeding on leaves, stems, and kernels along with maize cell wall constituents discovered in these tissues generated 24 leaf (LIR), 42 stem (SIR), and 20 kernel (KIR) insect resistance meta-QTL (MQTL) of a diverse genetic and geographical background. Most of these MQTL involved resistance to several insect species, therefore, generating a significant interest for multiple-insect resistance breeding. Some of the LIR MQTL such as LIR4, 17, and 22 involve resistance to European corn borer, sugarcane borer, and southwestern corn borer. Eleven out of the 42 SIR MQTL related to resistance to European corn borer and Mediterranean corn borer. There KIR MQTL, KIR3, 15, and 16 combined resistance to kernel damage by the maize weevil and the Mediterranean corn borer and could be used in breeding to reduce insect-related post-harvest grain yield loss and field to storage mycotoxin contamination. This meta-analysis corroborates the significant role played by cell wall constituents in maize resistance to insect since the majority of the MQTL contain QTL for members of the hydroxycinnamates group such as p-coumaric acid, ferulic acid, and other diferulates and derivates, and fiber components such as acid detergent fiber, neutral detergent fiber, and lignin. Stem insect resistance MQTL display several co-localization between fiber and hydroxycinnamate components corroborating the hypothesis of cross-linking between these components that provide mechanical resistance to insect attacks. Our results highlight the existence of combined-insect resistance genomic regions in maize and set the basis of multiple-pests resistance breeding.

7.
PLoS One ; 8(11): e81479, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24278443

RESUMO

BACKGROUND: The bipartite single-stranded RNA genome of Sweet potato chlorotic stunt virus (SPCSV, genus Crinivirus; Closteroviridae) encodes a Class 1 RNase III (RNase3), a putative hydrophobic protein (p7) and a 22-kDa protein (p22) from genes located in RNA1. RNase3 and p22 suppress RNA silencing, the basal antiviral defence mechanism in plants. RNase3 is sufficient to render sweetpotato (Ipomoea batatas) virus-susceptible and predisposes it to development of severe diseases following infection with unrelated virus. The incidence, strains and gene content of SPCSV infecting wild plant species have not been studied. METHODOLOGY/PRINCIPAL FINDINGS: Thirty SPCSV isolates were characterized from 10 wild Ipomoea species, Hewittia sublobata or Lepistemon owariensis (family Convolvulaceae) in Uganda and compared with 34 local SPCSV isolates infecting sweetpotatoes. All isolates belonged to the East African (EA) strain of SPCSV and contained RNase3 and p7, but p22 was not detected in six isolates. The three genes showed only limited genetic variability and the proteins were under purifying selection. SPCSV isolates lacking p22 synergized with Sweet potato feathery mottle virus (SPFMV, genus potyvirus; Potyviridae) and caused severe symptoms in co-infected sweetpotato plants. One SPCSV isolate enhanced accumulation of SPFMV, but no severe symptoms developed. A new whitefly-transmitted virus (KML33b) encoding an RNase3 homolog (<56% identity to SPCSV RNase3) able to suppresses sense-mediated RNA silencing was detected in I. sinensis. CONCLUSIONS/SIGNIFICANCE: SPCSV isolates infecting wild species and sweetpotato in Uganda were genetically undifferentiated, suggesting inter-species transmission of SPCSV. Most isolates in Uganda contained p22, unlike SPCSV isolates characterized from other countries and continents. Enhanced accumulation of SPFMV and increased disease severity were found to be uncoupled phenotypic outcomes of RNase3-mediated viral synergism in sweetpotato. A second virus encoding an RNase3-like RNA silencing suppressor was detected. Overall, results provided many novel and important insights into evolutionary biology of SPCSV.


Assuntos
Crinivirus/genética , Evolução Molecular , Genes Supressores , Variação Genética , Ipomoea batatas/virologia , Doenças das Plantas/virologia , RNA Viral/genética , Sequência de Aminoácidos , Ipomoea batatas/classificação , Dados de Sequência Molecular , Fenótipo , Filogenia , Seleção Genética , Alinhamento de Sequência , Sorotipagem , Proteínas Virais/genética
8.
Plant Signal Behav ; 3(7): 439-45, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19513234

RESUMO

Starch branching enzyme (SBE) activity in the cassava storage root exhibited a diurnal fluctuation, dictated by a transcriptional oscillation of the corresponding SBE genes. The peak of SBE activity coincided with the onset of sucrose accumulation in the storage, and we conclude that the oscillatory mechanism keeps the starch synthetic apparatus in the storage root sink in tune with the flux of sucrose from the photosynthetic source. When storage roots were uncoupled from the source, SBE expression could be effectively induced by exogenous sucrose. Turanose, a sucrose isomer that cannot be metabolized by plants, mimicked the effect of sucrose, demonstrating that downstream metabolism of sucrose was not necessary for signal transmission. Also glucose and glucose-1-P induced SBE expression. Interestingly, induction by sucrose, turanose and glucose but not glucose-1-P sustained an overt semidian (12-h) oscillation in SBE expression and was sensitive to the hexokinase (HXK) inhibitor glucosamine. These results suggest a pivotal regulatory role for HXK during starch synthesis. Abscisic acid (ABA) was another potent inducer of SBE expression. Induction by ABA was similar to that of glucose-1-P in that it bypassed the semidian oscillator. Both the sugar and ABA signaling cascades were disrupted by okadaic acid, a protein phosphatase inhibitor. Based on these findings, we propose a model for sugar signaling in regulation of starch synthesis in the cassava storage root.

9.
Mol Plant Pathol ; 6(2): 199-211, 2005 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-20565651

RESUMO

SUMMARY Sweetpotato (Ipomoea batatas) is a widely grown food crop, in which the most important diseases are caused by viruses. Genetic variability of three widely distributed sweetpotato viruses was analysed using data from 46 isolates of Sweet potato feathery mottle virus (SPFMV), 16 isolates of Sweet potato mild mottle virus (SPMMV) and 25 isolates of Sweet potato chlorotic stunt virus (SPCSV), of which 19, seven and six isolates, respectively, are newly characterized. Division of SPFMV into four genetic groups (strains) according to phylogenetic analysis of coat protein (CP) encoding sequences revealed that strain EA contained the East African isolates of SPFMV but none from elsewhere. In contrast, strain RC contained ten isolates from Australia, Africa, Asia and North America. Strain O contained six heterogeneous isolates from Africa, Asia and South America. The seven strain C isolates from Australia, Africa, Asia, and North and South America formed a group that was genetically distant from the other SPFMV strains. SPMMV isolates showed a high level of variability with no discrete strain groupings. SPCSV isolates from East Africa were phylogenetically distant to SPCSV isolates from elsewhere. Only from East Africa were adequate data available for different isolates of the three viruses to estimate the genetic variability of their local populations. The implications of the current sequence information and the need for more such information from most sweetpotato-growing regions of the world are discussed in relation to virus diagnostics and breeding for virus resistance.

10.
Plant Dis ; 87(4): 329-335, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30831824

RESUMO

Sweetpotato plants were surveyed for viruslike diseases and viruses in the four major agroecological zones of Uganda. Testing of 1,260 sweetpotato plants, of which 634 had virus-like symptoms, showed that virus disease incidence ranged from 2.7% (Soroti district, short grassland-savannah zone) to 20% (Mukono district, tall grass-forest mosaic zone). Sweet potato chlorotic stunt virus (SPCSV), Sweet potato feathery mottle virus (SPFMV), Sweet potato mild mottle virus (SPMMV), and sweet potato chlorotic fleck virus (SPCFV) were serologically detected and positive results confirmed by immunocapture reverse transcriptase polymerase chain reaction (IC-RT-PCR) and subsequent sequence analyses of the amplified fragments, except SPCFV, which lacked sequence information. SPCSV and SPFMV were detected in all the 14 districts surveyed, whereas SPMMV and SPCFV were detected in 13 and 8 districts, respectively. Logistic regression analysis revealed that SPCSV and SPFMV, SPFMV and SPMMV, and SPFMV and SPCFV more frequently occurred together than any other virus combinations or as single virus infections. Co-infections of SPCSV with SPFMV and/or SPMMV were associated with more severe and persistent symptoms than infections with each of the viruses alone. Several plants (11%) displaying viruslike symptoms did not react with the virus antisera used, suggesting that more viruses or viruslike agents are infecting sweetpotatoes in Uganda.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...