Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 3599, 2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35739099

RESUMO

Discovered more than 200 years ago in 1821, thermoelectricity is nowadays of global interest as it enables direct interconversion of thermal and electrical energy via the Seebeck/Peltier effect. In their seminal work, Mahan and Sofo mathematically derived the conditions for 'the best thermoelectric'-a delta-distribution-shaped electronic transport function, where charge carriers contribute to transport only in an infinitely narrow energy interval. So far, however, only approximations to this concept were expected to exist in nature. Here, we propose the Anderson transition in a narrow impurity band as a physical realisation of this seemingly unrealisable scenario. An innovative approach of continuous disorder tuning allows us to drive the Anderson transition within a single sample: variable amounts of antisite defects are introduced in a controlled fashion by thermal quenching from high temperatures. Consequently, we obtain a significant enhancement and dramatic change of the thermoelectric properties from p-type to n-type in stoichiometric Fe2VAl, which we assign to a narrow region of delocalised electrons in the energy spectrum near the Fermi energy. Based on our electronic transport and magnetisation experiments, supported by Monte-Carlo and density functional theory calculations, we present a novel strategy to enhance the performance of thermoelectric materials.

2.
Phys Chem Chem Phys ; 20(17): 11805-11818, 2018 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-29658037

RESUMO

We present the phase diagram of Ce1-xGdxO2-x/2 (CGO), calculated by means of a combined Density Functional Theory (DFT), cluster expansion and lattice Monte Carlo approach. We show that this methodology gives reliable results for the whole range of concentrations (x ≡ xGd ≤ 1). In the thermodynamic equilibrium, we observe two transitions: the onset of oxygen-vacancy (O-Va) ordering at ca. 1200-3300 K for concentrations xGd = 0.3-1, and a phase separation into CeO2 and C-type Gd2O3 occurring below ca. 1000 K for all concentrations. We also model 'quenched' systems, with cations immobile below 1500 K, and observe that the presence of random-like cation configurations does not prevent C-type vacancy ordering. The obtained transition temperatures for Va ordering agree rather well with existing experimental data. We analyse the effect of vacancy ordering and composition on the lattice parameters and relaxation pattern of cations.

3.
Phys Chem Chem Phys ; 19(39): 26606-26620, 2017 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-28949350

RESUMO

Ordering of dopants and oxygen vacancies is studied for Gd-doped ceria (xGd ≤ 0.25) by means of a combined density functional theory (DFT) and cluster expansion approach, where the cluster interactions derived from DFT calculations are further used in Monte Carlo simulations. The methodology is meticulously tested and the stability of the obtained solutions with respect to the volume change, applied exchange-correlation approximation and other modelling parameters is carefully analysed. We study Gd and vacancy ordering in the case of thermodynamic equilibrium and vacancy ordering for quenched Gd configurations. We find that at the thermodynamic equilibrium there exists a transition temperature (TC) below which phase separation into C-type Gd2O3 and pure CeO2 occurs. The phase separation is observed in the whole studied concentration range and the transition temperature increases with concentration from ca. 600 (xGd = 0.03) to 1000 K (xGd = 0.25). Above TC the distribution of Gd is random, oxygen vacancies tend to cluster in the coordination shells along 〈1, 1/2, 0〉 and 〈1, 1, 1〉, and the nearest neighbour position is preferred for Gd-vacancy. In the quenched Gd case, where Gd atoms are immobilised below 1500 K, the vacancy ordering is significantly frustrated. In fact, we observe an oxygen freezing transition below temperature TF ≈ TC - 350 K, which is close to temperatures at which a change in the conductivity slope is observed experimentally.

4.
J Phys Condens Matter ; 29(26): 265801, 2017 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-28548047

RESUMO

A detailed study on the ternary Zr-based intermetallic compound Zr2TiAl has been carried out using first-principles electronic structure calculations. From the total energy calculations, we find an antiferromagnetic L11-like (AFM) phase with alternating (1 1 1) spin-up and spin-down layers to be a stable phase among some others with magnetic moment on Ti being 1.22 [Formula: see text]. The calculated magnetic exchange interaction parameters of the Heisenberg Hamiltonian and subsequent Heisenberg Monte Carlo simulations confirm that this phase is the magnetic ground structure with Néel temperature between 30 and 100 K. The phonon dispersion relations further confirm the stability of the magnetic phase while the non-magnetic phase is found to have imaginary phonon modes and the same is also found from the calculated elastic constants. The magnetic moment of Ti is found to decrease under pressure eventually driving the system to the non-magnetic phase at around 46 GPa, where the phonon modes are found to be positive indicating stability of the non-magnetic phase. A continuous change in the band structure under compression leads to the corresponding change of the Fermi surface topology and electronic topological transitions (ETT) in both majority and minority spin cases, which are also evident from the calculated elastic constants and density of state calculations for the material under compression.

5.
J Am Chem Soc ; 126(14): 4717-25, 2004 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-15070391

RESUMO

Self-consistent periodic density functional theory calculations (GGA-PW91) have been performed to study the adsorption of O and O(2) and the dissociation of O(2) on the (111) facets of ordered Pt(3)Co and Pt(3)Fe alloys and on monolayer Pt skins covering these two alloys. Results are compared with those obtained on two Pt(111) surfaces, one at the equilibrium lattice constant and the other laterally compressed by 2% to match the strain in the Pt alloys. The absolute magnitudes of the binding energies of O and O(2) follow the same order in the two alloy systems: Pt skin < compressed Pt(111) < Pt(111) < Pt(3)Co(111) or Pt(3)Fe(111). The reduced activity of the compressed Pt(111) and Pt skins for oxygen can be rationalized as being due to the shifting of the d-band center increasingly away from the Fermi level. We propose that an alleviation of poisoning by O and enhanced rates for reactions involving O may be some of the reasons why Pt skins are more active for the oxygen reduction reaction in low-temperature fuel cells. Finally, a linear correlation between the transition-state and final-state energies of O(2) dissociation on monometallic and bimetallic surfaces is revealed, pointing to a simple way to screen for improved cathode catalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...