Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(12): 15998-16008, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36940251

RESUMO

Star block copolymer electrolytes with a lithium-ion conducting phase are investigated in the present work to assess the influence of this complex architecture compared to that of the linear one, on both, bulk morphology and ionic conductivity. For that purpose, the controlled synthesis of a series of poly(styrene-co-benzyl methacrylate)-b-poly[oligo(ethylene glycol) methyl ether acrylate] [P(S-co-BzMA)-b-POEGA] block copolymers (BCPs) by reversible addition-fragmentation transfer polymerization was performed from either a monofunctional or a tetrafunctional chain transfer agent containing trithiocarbonate groups. We emphasized how a small amount of styrene (6 mol %) drastically improved the control of the RAFT polymerization of benzyl methacrylate mediated by the tetrafunctional chain transfer agent. Transmission electron microscopy and small-angle X-ray scattering demonstrated a clear segregation of the BCPs in the presence of lithium salt. Interestingly, the star BCPs gave rise to highly ordered lamellar structures as compared to that of the linear analogues. Consequently, the reduced lamellae tortuosity of self-assembled star BCPs improved the lithium conductivity by more than 8 times at 30 °C for ∼30 wt % of the POEGA conductive phase.

2.
Mar Drugs ; 20(11)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36421995

RESUMO

Polybius henslowii, an abundant yet unexploited species of swimming crab, was investigated as a potential source of α-chitin and calcium lactate using deep eutectic solvents (DES) as extracting solvents. Choline chloride-malonic acid (CCMA) and choline chloride-lactic acid (CCLA) were used to obtain high purity α-chitin from ball-milled P. henslowii exoskeleton in 2 h at 120 °C, with yields of 12.05 ± 2.54% and 12.8 ± 1.54%, respectively. The physical and chemical characteristics of the obtained chitins were assessed using CHN elemental analysis, attenuated total reflectance-Fourier transform infrared spectroscopy, thermogravimetric analysis, and scanning electron microscopy. Furthermore, the CCLA solvent was reusable three times with little effect on the extract purity, and calcium lactate was produced at the end of the recycling cycles. The ensuing calcium lactate was also characterized in terms of chemical and physical properties. The obtained chitin is a promising raw material for downstream processing and the double valorization pathway with the obtention of calcium salts may increase the viability of a DES-based approach for the processing of mineralized substrates.


Assuntos
Braquiúros , Quitina , Animais , Quitina/química , Solventes/química , Solventes Eutéticos Profundos , Colina/química
3.
Soft Matter ; 12(3): 790-7, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26528753

RESUMO

Nowadays, a challenge in the preparation of hierarchically ordered materials is the control of concomitant and interacting self-organization processes occurring in time at different length scales. In the present paper, the breath figure process is combined with block copolymer nano-phase segregation to elaborate hierarchically structured honeycomb porous films. Copolymer ordering, at the nanometer length scale, is observed and described in detail with respect to the array of pores of micrometer dimension, hence pointing out the structural interplays between both length-scales. The study is focused on two diblock copolymers made of polystyrene and poly(tert-butyl acrylate) (PS-b-PtBA) with compositions producing lamellae or hexagonal packing of cylinders at thermodynamical equilibrium. Transmission Electron Microscopy completed with Small and Ultra-Small Angle Scattering are performed to evidence the inner morphologies of the honeycomb. The structural data are discussed in the light of the honeycomb film formation process establishing the interest in using kinetically trapped block copolymer self-organization as an imprint to elucidate the complex breath figure process.

4.
Macromol Rapid Commun ; 32(14): 1072-6, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21681996

RESUMO

In the present manuscript, we have demonstrated that hierarchically structured smart porous polymer films based on honeycomb-patterned surface can be elaborated from PS-b-P4VP pH-responsive block copolymer using the breath figure process. Despite the fast film formation by a bottom-up process, the copolymer nanostructuration was observed inside the walls of the honeycomb porous film. Atomic force microscopy (AFM), small angle X-ray and neutron scattering (SAXS and SANS) measurements were used to reveal both the hexagonal arrays formed by the pores at the micrometer length scale and the hexagonal copolymer self-assembly at the nanometer length scale. Contact angle (CA) measurements were used to point out the reversible pH-responsive wettability character of the surface. The PS-b-P4VP honeycomb film shows a contact angle variation of 20° between pH 9 and pH 3. An increase of the roughness was obtained with the pincushions hexagonal array enhancing the pH responsiveness of the polymer film with a switching CA gap of 75° when pH tuned from pH 9 to pH 3. This work presents the first report on honeycomb porous and pincushion films exhibiting a reversible pH-responsive character.


Assuntos
Nanoestruturas/química , Poliestirenos/química , Polivinil/química , Concentração de Íons de Hidrogênio , Porosidade , Propriedades de Superfície , Molhabilidade
5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 83(3 Pt 1): 031401, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21517498

RESUMO

We report the results of an experimental study of the microstructure of dispersions of Carbopol ETD 2050, a model yield-stress fluid. Using two different light scattering instruments, measurements were made over three decades in scattering wave vector, from 0.02 to 25 µm⁻¹. These measurements reveal microstructure characterized by two length scales: a longer length scale, 6 µm and larger, that depends on Carbopol concentration and the pH of the dispersion and a shorter length scale of approximately 400 nm that is independent of both sample concentration and pH. We relate these results to shear rheology measurement of the yield stress of these materials.


Assuntos
Polivinil/química , Resinas Acrílicas , Química/métodos , Emulsões , Desenho de Equipamento , Concentração de Íons de Hidrogênio , Luz , Peso Molecular , Reologia , Espalhamento de Radiação , Resistência ao Cisalhamento , Estresse Mecânico
6.
Phys Rev E Stat Nonlin Soft Matter Phys ; 73(4 Pt 1): 041405, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16711798

RESUMO

The small-scale rheology of Carbopol ETD 2050, a polymer gel with a yield stress, is studied as a function of polymer concentration by measuring the diffusion of submicron-sized spherical fluorescent particles suspended in gel. Dynamic light scattering is used to determine the mean-squared displacement (of the particles as a function of lag time t. Fluorescence microscopy is used to track the particle trajectories directly, from which and the van Hove correlation function are determined. From our results we calculate the microrheological viscous and elastic moduli of the material. The two techniques cover complementary ranges of tau and and give results that agree well. The microrheological moduli are substantially smaller than the bulk values as determined by conventional shear rheometry. The bulk viscoelastic behavior is dominated by the elastic modulus, while at low enough concentrations and high enough frequencies the microrheological response is predominantly viscous. These results will be discussed in the context of the gel structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA