Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 9(5)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35621490

RESUMO

Pseudoexfoliation, one of the most frequent crystalline lens complex disorders, is prevalent in up to 30% of individuals older than 60 years old. This disease can lead to severe conditions, such as subluxation or dislocation of the lens, due to the weakening of the zonules. The goal for the present study was to understand the relevant biomechanical features that can lead to the worsening of an individual's visual capacity under pseudoexfoliation. To this end, finite element models based on a 62-year-old lens complex were developed, composed by the capsular bag, cortex, nucleus, anterior, equatorial, and posterior zonular fibers. Healthy and pseudoexfoliative conditions were simulated, varying the location of the zonulopathy (inferior/superior) and the degenerated layer. The accommodative capacity of the models with inferior dialysis of the zonular fibers was, on average, 4.7% greater than for the cases with superior dialysis. If the three sets of zonules were disrupted, this discrepancy increased to 14.9%. The present work provides relevant data to be further analyzed in clinical scenarios, as these models (and their future extension to a wider age range) can help in identifying the most influential regions for the reduction of the visual capacity of the lens.

2.
J Biomech ; 117: 110263, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33493715

RESUMO

Bone Tissue Engineering has been focusing on improving the current methods for bone repair, being the use of scaffolds presented as an upgrade to traditional surgery techniques. Scaffolds are artificially porous matrices, meant to promote cell seeding and proliferation, being these properties influenced by the permeability of the structure. This work employed experimental pressure drop tests and Computational Fluid Dynamics models to assess permeability (and fluid streamlines) within different triply periodic minimal surfaces scaffold geometries (Schwarz D, Gyroid and Schwarz P). The pressure outputs from the computational analysis presented a good correlation with the experimental results, with R2 equal to 0.903; they have also shown that a lower porosity may not mean a lower permeability if the geometry is altered, such as the difference between 60% porous Gyroid scaffolds (8.1*10-9 mm2) and 70% porous Schwarz D scaffolds (7.1*10-9 mm2). Fluid streamlines revealed how the Gyroid geometries are the most appropriate design for most bone tissue engineering applications, due to their consistent fluid permeation, followed by Schwarz D. The Schwarz P geometries have shown flat streamlines and significant variation of the permeability with the porosity (an increase of 10% in their porosity lead to an increase in the permeability from 5.1*10-9 mm2 to 11.7*10-9 mm2), which would imply a poor environment for cell seeding and proliferation.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Osso e Ossos , Permeabilidade , Porosidade
3.
Artigo em Inglês | MEDLINE | ID: mdl-32903678

RESUMO

Computed tomography (CT) and X-ray images have been extensively used as a valuable diagnostic tool in dentistry for surgical planning and treatment. Nowadays, dental cone beam CT has been extensively used in dental clinics. Therefore, it is possible to employ three-dimensional (3D) data from the CT to reconstruct a two-dimensional (2D) panoramic dental image that provides a longitudinal view of the mandibular region of the patient, avoiding an additional exposure to X-ray. In this work, we developed a new automatic method for reconstructing 2D panoramic images of the dental arch based on 3D CT images, using Bézier curves and optimization techniques. The proposed method was applied to five patients, some of them with missing teeth, and smooth panoramic images with good contrast were obtained.

4.
Int J Numer Method Biomed Eng ; 33(8): e2844, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-27781402

RESUMO

The automated extraction of anatomical reference landmarks in the femoral volume may improve speed, precision, and accuracy of surgical procedures, such as total hip arthroplasty. These landmarks are often hard to achieve, even via surgical incision. In addition, it provides a presurgical guidance for prosthesis sizing and placement. This study presents an automated workflow for femoral orientation and landmark extraction from a 3D surface mesh. The extraction of parameters such as the femoral neck axis, the femoral middle diaphysis axis, both trochanters and the center of the femoral head will allow the surgeon to establish the correct position of bony cuts to restore leg length and femoral offset. The definition of the medullary canal endosteal wall is used to position the prosthesis' stem. Furthermore, prosthesis alignment and sizing methods were implemented to provide the surgeon with presurgical information about performance of each of the patient-specific femur-implant couplings. The workflow considers different commercially available hip stems and has the potential to help the preoperative planning of a total hip arthroplasty in an accurate, repeatable, and reliable way. The positional and orientation errors are significantly reduced, and therefore, the risk of implant failure and subsequent revision surgery are also reduced.


Assuntos
Artroplastia de Quadril/instrumentação , Artroplastia de Quadril/métodos , Automação , Fêmur/cirurgia , Prótese de Quadril , Desenho de Prótese , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Feminino , Fêmur/fisiologia , Cabeça do Fêmur , Colo do Fêmur , Humanos , Processamento de Imagem Assistida por Computador , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Osteotomia , Análise de Componente Principal
5.
Med Eng Phys ; 38(12): 1474-1480, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27751655

RESUMO

Femur segmentation can be an important tool in orthopedic surgical planning. However, in order to overcome the need of an experienced user with extensive knowledge on the techniques, segmentation should be fully automatic. In this paper a new fully automatic femur segmentation method for CT images is presented. This method is also able to define automatically the medullary canal and performs well even in low resolution CT scans. Fully automatic femoral segmentation was performed adapting a template mesh of the femoral volume to medical images. In order to achieve this, an adaptation of the active shape model (ASM) technique based on the statistical shape model (SSM) and local appearance model (LAM) of the femur with a novel initialization method was used, to drive the template mesh deformation in order to fit the in-image femoral shape in a time effective approach. With the proposed method a 98% convergence rate was achieved. For high resolution CT images group the average error is less than 1mm. For the low resolution image group the results are also accurate and the average error is less than 1.5mm. The proposed segmentation pipeline is accurate, robust and completely user free. The method is robust to patient orientation, image artifacts and poorly defined edges. The results excelled even in CT images with a significant slice thickness, i.e., above 5mm. Medullary canal segmentation increases the geometric information that can be used in orthopedic surgical planning or in finite element analysis.


Assuntos
Fêmur/diagnóstico por imagem , Processamento de Imagem Assistida por Computador , Razão Sinal-Ruído , Tomografia Computadorizada por Raios X , Automação , Humanos
6.
J Biomech ; 45(2): 239-46, 2012 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-22115063

RESUMO

The success of a total hip arthroplasty is strongly related to the initial stability of the femoral component and to the stress shielding effect. In fact, for cementless stems, initial stability is essential to promote bone ingrowth into the stem coating. An inefficient primary stability is also a cause of thigh pain. In addition, the bone adaptation after the surgery can lead to an excessive bone loss and, consequently, can compromise the success of the implant. These factors depend on prosthesis design, namely on material, interface conditions and shape. Although, surgeons use stems with very different geometries, new computational tools using structural optimization methods have been used to achieve a better design in order to improve initial stability and therefore, the implant durability. In this work, a multi-criteria shape optimization process is developed to study the relationship between implants performance and geometry. The multi-criteria objective function takes into account the initial stability of the femoral stem and the effect of stress shielding on bone adaptation after the surgery. Then, the optimized stems are tested using a concurrent model for bone remodeling and osseointegration to evaluate long-term performance. Additionally, the sensitivity to misalignments is analyzed, since femoral stems are often placed in varus or valgus position. Results show that the different criteria are contradictory resulting in different characteristics for the hip stem. However, the multi-criteria formulation leads to compromise solutions, with a combination of the geometric characteristics obtained for each criterion separately.


Assuntos
Cabeça do Fêmur , Colo do Fêmur , Prótese de Quadril , Desenho de Prótese/métodos , Artroplastia de Quadril/métodos , Humanos , Desenho de Prótese/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...