Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Biol Sci ; 289(1985): 20221189, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36285498

RESUMO

Metabolic cost minimization is thought to underscore the neural control of locomotion. Yet, avoiding high muscle activation, a cause of fatigue, often outperforms energy minimization in computational predictions of human gait. Discerning the relative importance of these criteria in human walking has proved elusive, in part, because they have not been empirically decoupled. Here, we explicitly decouple whole-body metabolic cost and 'fatigue-like' muscle activation costs (estimated from electromyography) by pitting them against one another using two distinct gait tasks. When experiencing these competing costs, participants (n = 10) chose the task that avoided overburdening muscles (fatigue avoidance) at the expense of higher metabolic power (p < 0.05). Muscle volume-normalized activation more closely models energy use and was also minimized by the participants' decision (p < 0.05), demonstrating that muscle activation was, at best, an inaccurate signal for metabolic energy. Energy minimization was only observed when there was no adverse effect on muscle activation costs. By decoupling whole-body metabolic and muscle activation costs, we provide among the first empirical evidence of humans embracing non-energetic optimality in favour of a clearly defined neuromuscular objective. This finding indicates that local muscle fatigue and effort may well be key factors dictating human walking behaviour and its evolution.


Assuntos
Metabolismo Energético , Caminhada , Humanos , Metabolismo Energético/fisiologia , Caminhada/fisiologia , Marcha/fisiologia , Locomoção/fisiologia , Músculos , Fenômenos Biomecânicos/fisiologia , Músculo Esquelético/fisiologia
2.
Sci Robot ; 7(64): eabo2147, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35294221

RESUMO

Recapitulating avian locomotion opens the door for simple and economical control of legged robots without sensory feedback systems.


Assuntos
Robótica , Corrida , Animais , Aves , Marcha , Locomoção , Robótica/instrumentação
3.
J Exp Biol ; 224(21)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34522962

RESUMO

Elastic energy storage and release can enhance performance that would otherwise be limited by the force-velocity constraints of muscle. Although functional influence of a biological spring depends on tuning between components of an elastic system (the muscle, spring-driven mass and lever system), we do not know whether elastic systems systematically adapt to functional demand. To test whether altering work and power generation during maturation alters the morphology of an elastic system, we prevented growing guinea fowl (Numida meleagris) from jumping. We compared the jump performance of our treatment group at maturity with that of controls and measured the morphology of the gastrocnemius elastic system. We found that restricted birds jumped with lower jump power and work, yet there were no significant between-group differences in the components of the elastic system. Further, subject-specific models revealed no difference in energy storage capacity between groups, though energy storage was most sensitive to variations in muscle properties (most significantly operating length and least dependent on tendon stiffness). We conclude that the gastrocnemius elastic system in the guinea fowl displays little to no plastic response to decreased demand during growth and hypothesize that neural plasticity may explain performance variation.


Assuntos
Galliformes , Músculo Esquelético , Animais , Fenômenos Biomecânicos , Tendões
4.
Artigo em Inglês | MEDLINE | ID: mdl-32984280

RESUMO

Tendon mechanical properties respond to altered load in adults, but how load history during growth affects adult tendon properties remains unclear. To address this question, we adopted an avian model in which we altered the mechanical load environment across the growth span. Animals were divided at 2 weeks of age into three groups: (1) an exercise control group given the opportunity to perform high-acceleration movements (EXE, n = 8); (2) a sedentary group restricted from high-intensity exercise (RES, n = 8); and (3) a sedentary group also restricted from high-intensity exercise and in which the gastrocnemius muscles were partially paralyzed using repeated bouts of botulinum toxin-A injections (RES-BTX, n = 8). Video analysis of bird movement confirmed the restrictions eliminated high-intensity exercise and did not alter time spent walking and sitting between groups. At skeletal maturity (33-35 weeks) animals were sacrificed for analysis, consisting of high-field MRI and material load testing, of both the entire free Achilles tendon and the tendon at the bone-tendon junction. Free tendon stiffness, modulus, and hysteresis were unaffected by variation in load environment. Further, the bone-tendon junction cross-sectional area, stress, and strain were also unaffected by variations in load environment. These results suggest that: (a) a baseline level of low-intensity activity (standing and walking) may be sufficient to maintain tendon growth; and (b) if this lower threshold of tendon load is met, non-mechanical mediated tendon growth may override the load-induced mechanotransduction signal attributed to tendon remodeling in adults of the same species. These results are important for understanding of musculoskeletal function and tendon health in growing individuals.

5.
J Appl Physiol (1985) ; 128(1): 50-58, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31751181

RESUMO

Decreases in activity levels in children worldwide are feared to have long-term health repercussions. Yet, because of the difficulty of performing controlled long-term studies in humans, we do not yet understand how decreases in childhood activity influence adult functional capacity. Here, in an avian bipedal model, we evaluated the elimination of all high-intensity activity during growth on adult performance. We evaluated three alternative hypotheses: Elimination of high-intensity activity 1) does not influence adult function, 2) results in task-specific deficits in adulthood, or 3) results in deficits that generalize across locomotor tasks. We found that animals restricted from jumping and sprinting during growth showed detriments as adults in maximal jump performance in comparison to controls, but did not require more metabolic energy during steady-state running or standing. From this, we conclude that functional deficits from elimination of high-intensity exercise are task specific and do not generalize across all locomotor functions.NEW & NOTEWORTHY Decreasing childhood activity levels are feared to have long-term health repercussions, but testing this hypothesis is hampered by restrictions of human experimentation. Here, in a bipedal animal model, we examine how the elimination of high-intensity activity during all of maturation influences adult locomotor capacity. We found restricted activity during growth reduced mechanical power capacity but not submaximal metabolic cost. This suggests that reduced childhood activity may result in task-specific, rather than generalized locomotor deficits.


Assuntos
Galliformes/fisiologia , Locomoção/fisiologia , Músculo Esquelético/fisiologia , Condicionamento Físico Animal , Animais , Fenômenos Biomecânicos , Galliformes/crescimento & desenvolvimento , Modelos Animais
6.
J R Soc Interface ; 16(158): 20190227, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31506049

RESUMO

Minimization of metabolic energy is considered a fundamental principle of human locomotion, as demonstrated by an alignment between the preferred walking speed (PWS) and the speed incurring the lowest metabolic cost of transport. We aimed to (i) simultaneously disrupt metabolic cost and an alternate acute task requirement, namely speed error regulation, and (ii) assess whether the PWS could be explained on the basis of either optimality criterion in this new performance and energetic landscape. Healthy adults (N = 21) walked on an instrumented treadmill under normal conditions and, while negotiating a continuous gait perturbation, imposed leg-length asymmetry. Oxygen consumption, motion capture data and ground reaction forces were continuously recorded for each condition at speeds ranging from 0.6 to 1.8 m s-1, including the PWS. Both metabolic and speed regulation measures were disrupted by the perturbation (p < 0.05). Perturbed PWS selection did not exhibit energetic prioritization (although we find some indication of energy minimization after motor adaptation). Similarly, PWS selection did not support prioritization of speed error regulation, which was found to be independent of speed in both conditions. It appears that, during acute exposure to a mechanical gait perturbation of imposed leg-length asymmetry, humans minimize neither energetic cost nor speed regulation errors. Despite the abundance of evidence pointing to energy minimization during normal, steady-state gait, this may not extend acutely to perturbed gait. Understanding how the nervous system acutely controls gait perturbations requires further research that embraces multi-objective control paradigms.


Assuntos
Metabolismo Energético/fisiologia , Modelos Biológicos , Consumo de Oxigênio/fisiologia , Caminhada/fisiologia , Adulto , Feminino , Humanos , Masculino
7.
J Exp Biol ; 222(Pt 9)2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-30967514

RESUMO

Center of mass (COM) control has been proposed to serve economy- and stability-related locomotor task objectives. However, given the lack of evidence supporting direct sensing and/or regulation of the COM, it remains unclear whether COM mechanics are prioritized in the control scheme of walking. We posit that peripheral musculoskeletal structures, e.g. muscle, are more realistic control targets than the COM, given their abundance of sensorimotor receptors and ability to influence whole-body energetics. As a first test of this hypothesis, we examined whether conservation of stance-phase joint mechanics is prioritized over COM mechanics in a locomotor task where simultaneous conservation of COM and joint mechanics is not feasible: imposed leg-length asymmetry. Positive joint mechanical cost of transport (work per distance traveled; COTJNT) was maintained at values closer to normal walking than COM mechanical cost of transport (COTCOM; P<0.05, N=15). Furthermore, compared with our measures of COM mechanics (COTCOM, COM displacement), joint-level variables (COTJNT, integrated total support moment) also displayed stronger conservation (less change from normal walking) when the participants' self-selected gait was assessed against other possible gait solutions. We conclude that when walking humans are exposed to an asymmetric leg-length perturbation, control of joint mechanics is prioritized over COM mechanics. Our results suggest that mechanical and metabolic effort is likely regulated via control of peripheral structures and not directly at the level of the COM. Joint mechanics may provide a more accurate representation of the underlying locomotor control targets and may prove advantageous in informing predictive models of human walking.


Assuntos
Caminhada/fisiologia , Adulto , Fenômenos Biomecânicos , Feminino , Humanos , Masculino , Adulto Jovem
8.
J Exp Biol ; 221(Pt 16)2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-29903837

RESUMO

Surprisingly little information exists of the mechanics in the steps initializing the walk-to-run transition (WRT) in humans. Here, we assess how mechanical work of the limbs (vertical and horizontal) and the individual joints (ankle, knee and hip) are modulated as humans transition from a preferred constant walking velocity (vwalk) to a variety of running velocities (vrun; ranging from a sprint to a velocity slower than vwalk). WRTs to fast vrun values occur nearly exclusively through positive horizontal limb work, satisfying the goal of forward acceleration. Contrary to our hypothesis, however, positive mechanical work remains above that at vwalk even when decelerating. In these WRTs to slow running, positive mechanical work is remarkably high and is comprised nearly exclusively of vertical limb work. Vertical-to-horizontal work modulation may represent an optimization for achieving minimal and maximal vrun, respectively, while fulfilling an apparent necessity for energy input when initiating WRTs. Net work of the WRT steps was more evenly distributed across the ankle, knee and hip joints than expected. Absolute positive mechanical work exhibited a clearer modulation towards hip-based work at high accelerations (>3 m s-2), corroborating previous suggestions that the most proximal joints are preferentially recruited for locomotor tasks requiring high power and work production. In WRTs to very slow vrun values, high positive work is nevertheless done at the knee, indicating that modulation of joint work is not only dependent on the amount of work required but also the locomotor context.


Assuntos
Articulações/fisiologia , Perna (Membro) , Corrida/fisiologia , Caminhada/fisiologia , Aceleração , Adulto , Fenômenos Biomecânicos , Marcha , Humanos , Masculino
9.
J Orthop Res ; 35(6): 1203-1214, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27002477

RESUMO

Similar to most biological tissues, the biomechanical, and functional characteristics of the Achilles tendon are closely related to its composition and microstructure. It is commonly reported that type I collagen is the predominant component of tendons and is mainly responsible for the tissue's function. Although elastin has been found in varying proportions in other connective tissues, previous studies report that tendons contain very small quantities of elastin. However, the morphology and the microstructural relationship among the elastic fibres, collagen, and cells in tendon tissue have not been well examined. We hypothesize the elastic fibres, as another fibrillar component in the extracellular matrix, have a unique role in mechanical function and microstructural arrangement in Achilles tendons. It has been shown that elastic fibres present a close connection with the tenocytes. The close relationship of the three components has been revealed as a distinct, integrated and complex microstructural network. Notably, a "spiral" structure within fibril bundles in Achilles tendons was observed in some samples in specialized regions. This study substantiates the hierarchical system of the spatial microstructure of tendon, including the mapping of collagen, elastin and tenocytes, with 3-dimensional confocal images. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1203-1214, 2017.


Assuntos
Tendão do Calcâneo/citologia , Elastina , Matriz Extracelular , Colágenos Fibrilares , Tenócitos , Tendão do Calcâneo/química , Animais , Tecido Elástico , Análise de Fourier , Coelhos
10.
PeerJ ; 4: e2447, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27672504

RESUMO

BACKGROUND: Alterations in skeletal muscle function and architecture have been linked to the compromised exercise capacity characterizing chronic heart failure (CHF). However, how passive skeletal muscle force is affected in CHF is not clear. Understanding passive force characteristics in CHF can help further elucidate the extent to which altered contractile properties and/or architecture might affect muscle and locomotor function. Therefore, the aim of this study was to investigate passive force in a single muscle for which non-invasive measures of muscle size and estimates of fiber force are possible, the soleus (SOL), both in CHF patients and age- and physical activity-matched control participants. METHODS: Passive SOL muscle force and size were obtained by means of a novel approach combining experimental data (dynamometry, electromyography, ultrasound imaging) with a musculoskeletal model. RESULTS: We found reduced passive SOL forces (∼30%) (at the same relative levels of muscle stretch) in CHF vs. healthy individuals. This difference was eliminated when force was normalized by physiological cross sectional area, indicating that reduced force output may be most strongly associated with muscle size. Nevertheless, passive force was significantly higher in CHF at a given absolute muscle length (non length-normalized) and likely explained by the shorter muscle slack lengths and optimal muscle lengths measured in CHF compared to the control participants. This later factor may lead to altered performance of the SOL in functional tasks such gait. DISCUSSION: These findings suggest introducing exercise rehabilitation targeting muscle hypertrophy and, specifically for the calf muscles, exercise that promotes muscle lengthening.

11.
PLoS Comput Biol ; 12(9): e1005106, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27684554

RESUMO

While it is known that musculotendon units adapt to their load environments, there is only a limited understanding of tendon adaptation in vivo. Here we develop a computational model of tendon remodeling based on the premise that mechanical damage and tenocyte-mediated tendon damage and repair processes modify the distribution of its collagen fiber lengths. We explain how these processes enable the tendon to geometrically adapt to its load conditions. Based on known biological processes, mechanical and strain-dependent proteolytic fiber damage are incorporated into our tendon model. Using a stochastic model of fiber repair, it is assumed that mechanically damaged fibers are repaired longer, whereas proteolytically damaged fibers are repaired shorter, relative to their pre-damage length. To study adaptation of tendon properties to applied load, our model musculotendon unit is a simplified three-component Hill-type model of the human Achilles-soleus unit. Our model results demonstrate that the geometric equilibrium state of the Achilles tendon can coincide with minimization of the total metabolic cost of muscle activation. The proposed tendon model independently predicts rates of collagen fiber turnover that are in general agreement with in vivo experimental measurements. While the computational model here only represents a first step in a new approach to understanding the complex process of tendon remodeling in vivo, given these findings, it appears likely that the proposed framework may itself provide a useful theoretical foundation for developing valuable qualitative and quantitative insights into tendon physiology and pathology.

12.
J Appl Biomech ; 32(5): 441-8, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27175738

RESUMO

This study attempts to apply geometric morphometric techniques for the analysis of 3D kinematic marker-based gait data. As a test, we attempted to identify sexual dimorphism during the stance phase of the gait cycle. Two techniques were used to try to identify differences in the way males and females walk without the results being affected by individual differences in body shape and size. Twenty-eight kinematic markers were placed on the torso and legs of 6 male and 8 female subjects, and the 3D time varying coordinates of the kinematic markers were recorded. The gait cycle trials were time-normalized to 61 frames representing the stance phase of gait, and the change in the shape of the configuration of kinematic markers was analyzed using principal components analysis to produce 'gait signatures' that characterize the kinematics of each individual. The variation in the gait signatures was analyzed with a further principal components analysis. These methods were able to detect significant sexual dimorphism even after the effects of sexual body shape and size differences were factored out. We discuss insights gained from performing this study which may be of value to others attempting to apply geometric morphometric methods to motion analysis.


Assuntos
Marcha/fisiologia , Caracteres Sexuais , Adulto , Fenômenos Biomecânicos , Feminino , Humanos , Imageamento Tridimensional , Masculino , Análise de Componente Principal
13.
J R Soc Interface ; 13(118)2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27146688

RESUMO

Owing to their cursorial background, ostriches (Struthio camelus) walk and run with high metabolic economy, can reach very fast running speeds and quickly execute cutting manoeuvres. These capabilities are believed to be a result of their ability to coordinate muscles to take advantage of specialized passive limb structures. This study aimed to infer the functional roles of ostrich pelvic limb muscles during gait. Existing gait data were combined with a newly developed musculoskeletal model to generate simulations of ostrich walking and running that predict muscle excitations, force and mechanical work. Consistent with previous avian electromyography studies, predicted excitation patterns showed that individual muscles tended to be excited primarily during only stance or swing. Work and force estimates show that ostrich gaits are partially hip-driven with the bi-articular hip-knee muscles driving stance mechanics. Conversely, the knee extensors acted as brakes, absorbing energy. The digital extensors generated large amounts of both negative and positive mechanical work, with increased magnitudes during running, providing further evidence that ostriches make extensive use of tendinous elastic energy storage to improve economy. The simulations also highlight the need to carefully consider non-muscular soft tissues that may play a role in ostrich gait.


Assuntos
Simulação por Computador , Membro Posterior/fisiologia , Modelos Biológicos , Músculo Esquelético/fisiologia , Corrida/fisiologia , Struthioniformes/fisiologia , Caminhada/fisiologia , Animais , Membro Posterior/anatomia & histologia , Músculo Esquelético/anatomia & histologia , Pelve/anatomia & histologia , Pelve/fisiologia , Corrida/psicologia , Struthioniformes/anatomia & histologia
14.
PLoS One ; 11(4): e0152602, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27054319

RESUMO

Elastic energy returned from passive-elastic structures of the lower limb is fundamental in lowering the mechanical demand on muscles during running. The purpose of this study was to investigate the two length-modulating mechanisms of the plantar fascia, namely medial longitudinal arch compression and metatarsophalangeal joint (MPJ) excursion, and to determine how these mechanisms modulate strain, and thus elastic energy storage/return of the plantar fascia during running. Eighteen runners (9 forefoot and 9 rearfoot strike) performed three treadmill running trials; unrestricted shod, shod with restricted arch compression (via an orthotic-style insert), and barefoot. Three-dimensional motion capture and ground reaction force data were used to calculate lower limb kinematics and kinetics including MPJ angles, moments, powers and work. Estimates of plantar fascia strain due to arch compression and MPJ excursion were derived using a geometric model of the arch and a subject-specific musculoskeletal model of the plantar fascia, respectively. The plantar fascia exhibited a typical elastic stretch-shortening cycle with the majority of strain generated via arch compression. This strategy was similar in fore- and rear-foot strike runners. Restricting arch compression, and hence the elastic-spring function of the arch, was not compensated for by an increase in MPJ-derived strain. In the second half of stance the plantar fascia was found to transfer energy between the MPJ (energy absorption) and the arch (energy production during recoil). This previously unreported energy transfer mechanism reduces the strain required by the plantar fascia in generating useful positive mechanical work at the arch during running.


Assuntos
Fenômenos Biomecânicos , Fáscia/fisiologia , Articulação Metatarsofalângica/fisiologia , Corrida/fisiologia , Adulto , Pé/fisiologia , Órtoses do Pé , Humanos , Masculino , Modelos Biológicos , Estresse Mecânico
15.
Sci Rep ; 6: 19403, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26783259

RESUMO

The energy-sparing spring theory of the foot's arch has become central to interpretations of the foot's mechanical function and evolution. Using a novel insole technique that restricted compression of the foot's longitudinal arch, this study provides the first direct evidence that arch compression/recoil during locomotion contributes to lowering energy cost. Restricting arch compression near maximally (~80%) during moderate-speed (2.7 ms(-1)) level running increased metabolic cost by + 6.0% (p < 0.001, d = 0.67; unaffected by foot strike technique). A simple model shows that the metabolic energy saved by the arch is largely explained by the passive-elastic work it supplies that would otherwise be done by active muscle. Both experimental and model data confirm that it is the end-range of arch compression that dictates the energy-saving role of the arch. Restricting arch compression had no effect on the cost of walking or incline running (3°), commensurate with the smaller role of passive-elastic mechanics in these gaits. These findings substantiate the elastic energy-saving role of the longitudinal arch during running, and suggest that arch supports used in some footwear and orthotics may increase the cost of running.


Assuntos
Fenômenos Biomecânicos , Locomoção , Metatarso/anatomia & histologia , Metatarso/fisiologia , Modelos Biológicos , Atividade Motora , Humanos , Corrida , Caminhada
16.
Exerc Sport Sci Rev ; 44(1): 45-50, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26509482

RESUMO

We propose the hypothesis that soleus muscle function may provide a surrogate measure of functional capacity in patients with heart failure. We summarize literature pertaining to skeletal muscle as a locus of fatigue and present our recent findings, using in vivo imaging in combination with biomechanical experimentation and modeling, to reveal novel structure-function relationships in chronic heart failure skeletal muscle and gait.


Assuntos
Insuficiência Cardíaca/fisiopatologia , Músculo Esquelético/fisiopatologia , Fenômenos Biomecânicos , Exercício Físico/fisiologia , Fadiga/fisiopatologia , Marcha/fisiologia , Indicadores Básicos de Saúde , Humanos , Músculo Esquelético/anatomia & histologia
17.
J Sports Sci ; 34(15): 1485-90, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26618486

RESUMO

This study examined the haemolytic effects of an interval-based running task in fore-foot and rear-foot striking runners. Nineteen male distance runners (10 fore-foot, 9 rear-foot) completed 8 × 3 min repeats at 90% vVO2peak on a motorised treadmill. Pre- and post-exercise venous blood samples were analysed for serum haptoglobin to quantify the haemolytic response to running. Vertical ground reaction forces were also captured via a force plate beneath the treadmill belt. Haptoglobin levels were significantly decreased following exercise (P = 0.001) in both groups (but not between groups), suggesting that the running task created a haemolytic stress. The ground reaction force data showed strong effect sizes for a greater peak force (d = 1.20) and impulse (d = 1.37) in fore-foot runners, and a greater rate of force development (d = 2.74) in rear-foot runners. The lack of difference in haptoglobin response between groups may be explained by the trend for fore-foot runners to experience greater peak force and impulse during the stance phase of their running gait, potentially negating any impact of the greater rate of force development occurring from the rear-foot runners' heel strike. Neither type of runner (fore-foot or rear-foot) appears more susceptible to technique-related foot-strike haemolysis.


Assuntos
Antepé Humano/fisiologia , Marcha/fisiologia , Calcanhar/fisiologia , Hemólise , Corrida/fisiologia , Adolescente , Adulto , Fenômenos Biomecânicos , Dieta , Teste de Esforço , Ferritinas/metabolismo , Haptoglobinas/metabolismo , Humanos , Masculino , Sapatos , Estresse Mecânico , Adulto Jovem
18.
J Orthop Res ; 33(12): 1888-96, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26123799

RESUMO

Physiotherapy is one of the effective treatments for tendinopathy, whereby symptoms are relieved by changing the biomechanical environment of the pathological tendon. However, the underlying mechanism remains unclear. In this study, we first established a model of progressive tendinopathy-like degeneration in the rabbit Achilles. Following ex vivo loading deprivation culture in a bioreactor system for 6 and 12 days, tendons exhibited progressive degenerative changes, abnormal collagen type III production, increased cell apoptosis, and weakened mechanical properties. When intervention was applied at day 7 for another 6 days by using cyclic tensile mechanical stimulation (6% strain, 0.25 Hz, 8 h/day) in a bioreactor, the pathological changes and mechanical properties were almost restored to levels seen in healthy tendon. Our results indicated that a proper biomechanical environment was able to rescue early-stage pathological changes by increased collagen type I production, decreased collagen degradation and cell apoptosis. The ex vivo model developed in this study allows systematic study on the effect of mechanical stimulation on tendon biology.


Assuntos
Tendão do Calcâneo/patologia , Reatores Biológicos , Animais , Apoptose , Fenômenos Biomecânicos , Sobrevivência Celular , Colágeno/química , Colágeno Tipo III/metabolismo , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Feminino , Marcação In Situ das Extremidades Cortadas , Técnicas In Vitro , Coelhos , Reação em Cadeia da Polimerase em Tempo Real , Estresse Mecânico , Tendinopatia/metabolismo , Resistência à Tração
19.
PeerJ ; 3: e1001, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26082859

RESUMO

We developed a three-dimensional, biomechanical computer model of the 36 major pelvic limb muscle groups in an ostrich (Struthio camelus) to investigate muscle function in this, the largest of extant birds and model organism for many studies of locomotor mechanics, body size, anatomy and evolution. Combined with experimental data, we use this model to test two main hypotheses. We first query whether ostriches use limb orientations (joint angles) that optimize the moment-generating capacities of their muscles during walking or running. Next, we test whether ostriches use limb orientations at mid-stance that keep their extensor muscles near maximal, and flexor muscles near minimal, moment arms. Our two hypotheses relate to the control priorities that a large bipedal animal might evolve under biomechanical constraints to achieve more effective static weight support. We find that ostriches do not use limb orientations to optimize the moment-generating capacities or moment arms of their muscles. We infer that dynamic properties of muscles or tendons might be better candidates for locomotor optimization. Regardless, general principles explaining why species choose particular joint orientations during locomotion are lacking, raising the question of whether such general principles exist or if clades evolve different patterns (e.g., weighting of muscle force-length or force-velocity properties in selecting postures). This leaves theoretical studies of muscle moment arms estimated for extinct animals at an impasse until studies of extant taxa answer these questions. Finally, we compare our model's results against those of two prior studies of ostrich limb muscle moment arms, finding general agreement for many muscles. Some flexor and extensor muscles exhibit self-stabilization patterns (posture-dependent switches between flexor/extensor action) that ostriches may use to coordinate their locomotion. However, some conspicuous areas of disagreement in our results illustrate some cautionary principles. Importantly, tendon-travel empirical measurements of muscle moment arms must be carefully designed to preserve 3D muscle geometry lest their accuracy suffer relative to that of anatomically realistic models. The dearth of accurate experimental measurements of 3D moment arms of muscles in birds leaves uncertainty regarding the relative accuracy of different modelling or experimental datasets such as in ostriches. Our model, however, provides a comprehensive set of 3D estimates of muscle actions in ostriches for the first time, emphasizing that avian limb mechanics are highly three-dimensional and complex, and how no muscles act purely in the sagittal plane. A comparative synthesis of experiments and models such as ours could provide powerful synthesis into how anatomy, mechanics and control interact during locomotion and how these interactions evolve. Such a framework could remove obstacles impeding the analysis of muscle function in extinct taxa.

20.
PLoS One ; 10(5): e0127113, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26000460

RESUMO

Active video games that require physical exertion during game play have been shown to confer health benefits. Typically, energy expended during game play is measured using devices attached to players, such as accelerometers, or portable gas analyzers. Since 2010, active video gaming technology incorporates marker-less motion capture devices to simulate human movement into game play. Using the Kinect Sensor and Microsoft SDK this research aimed to estimate the mechanical work performed by the human body and estimate subsequent metabolic energy using predictive algorithmic models. Nineteen University students participated in a repeated measures experiment performing four fundamental movements (arm swings, standing jumps, body-weight squats, and jumping jacks). Metabolic energy was captured using a Cortex Metamax 3B automated gas analysis system with mechanical movement captured by the combined motion data from two Kinect cameras. Estimations of the body segment properties, such as segment mass, length, centre of mass position, and radius of gyration, were calculated from the Zatsiorsky-Seluyanov's equations of de Leva, with adjustment made for posture cost. GPML toolbox implementation of the Gaussian Process Regression, a locally weighted k-Nearest Neighbour Regression, and a linear regression technique were evaluated for their performance on predicting the metabolic cost from new feature vectors. The experimental results show that Gaussian Process Regression outperformed the other two techniques by a small margin. This study demonstrated that physical activity energy expenditure during exercise, using the Kinect camera as a motion capture system, can be estimated from segmental mechanical work. Estimates for high-energy activities, such as standing jumps and jumping jacks, can be made accurately, but for low-energy activities, such as squatting, the posture of static poses should be considered as a contributing factor. When translated into the active video gaming environment, the results could be incorporated into game play to more accurately control the energy expenditure requirements.


Assuntos
Metabolismo Energético/fisiologia , Exercício Físico/fisiologia , Movimento/fisiologia , Recreação/fisiologia , Jogos de Vídeo , Adulto , Feminino , Humanos , Masculino , Esforço Físico/fisiologia , Postura/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...