Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 7(3): e06518, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33817379

RESUMO

BACKGROUND: Neurofibromatosis type 1 (NF1) is an autosomal dominant genetic disorder with a prevalence of 1:3000 births and a wide variety of clinical manifestations. Cutaneous neurofibromas (cNF) are among the most common visible manifestations of NF1 and present a major clinical burden for patients. NF1 patients with cNF often report decreased quality of life, emotional well-being and physical comfort. Developing effective medical therapies for cNF has been identified as a priority for the majority of adults with NF1. METHODS: The study was an open, controlled and prospective proof-of-concept clinical trial. The topical treatment consisted of two steps: cNF microporation using a laser device followed by topical application of one drop of diclofenac 25 mg/mL on the surface of the cNF (T neurofibroma = treatment) or physiological saline (C neurofibroma = control) and reapplied twice daily for 3 days. Neurofibroma assessments included visual and dermatoscopy observations noting color and presence of necrosis, presence of flaccidity, measurements in two dimensions, photographs, and histopathology after excision. The primary efficacy variable was the presence of tissue necrosis. The primary safety variable was the occurrence of treatment-related adverse events. RESULTS: Six patients were included in the study. The treatment resulted in transitory topical changes (healing of the microporation grid with formation of scintillating tissue layer, hyperemia and desquamation), with no statistically significant variation in the dimensions of the T and C neurofibromas in relation to pretreatment measurements. There was no necrosis in the T or C neurofibromas. In the histopathological analysis, there was no significant difference in the distribution of chronic (lymphocytic) inflammatory infiltrate in the papillary reticular dermis (subepithelial), type of infiltrate (diffuse, perivascular, or both), presence of fibrosis, and presence of atrophy among the T and C neurofibromas. No adverse events attributable to the use of diclofenac were reported during the treatment period. CONCLUSIONS: Treatment did not result in significant alterations in terms of presence of tissue necrosis, size, or histopathological features in the T neurofibromas or in comparison to the C neurofibromas. Topical diclofenac with laser microporation was well-tolerated, with no adverse events attributable to diclofenac reported. Whether these observations are due to minimal systemic and neurofibroma exposure remain to be explored in dosage studies with larger patient groups. TRIAL REGISTRATION: ClinicalTrials.gov (NCT03090971) retrospectively registered March 27, 2017.

2.
Clin Pathol ; 13: 2632010X20928930, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-35156025

RESUMO

INTRODUCTION: Neurofibromatosis type 1 (NF1) is one of the most common autosomal dominant genetic disorders. Some clinical manifestations are present at birth, while some develop during childhood, and others can occur at any age. Given the early age at which patients develop clinical features, diagnosis is often made during childhood. The most prevalent features of NF1 are café au lait spots, dermal and plexiform neurofibromas, and learning disability. A variety of skeletal problems may be seen in NF1, including scoliosis, short stature, and pseudoarthrosis. Reduced skeletal bone mass has been documented to be a common phenomenon in children and adults with NF1. Decreased serum 25-hydroxyvitamin D (vitamin D) levels have been noted in adults and children with NF1 and have been reported to be inversely correlated with the number of dermal neurofibromas in adults. However, the actual correlation of vitamin D level to bone density and dermal neurofibroma number in children with NF1 remains unclear. OBJECTIVES: The primary objective of this study was to evaluate vitamin D levels among children and adolescents with NF1. The secondary objective was to describe the levels of vitamin D among children and adolescents with NF1, to verify in which age group there is a higher frequency of vitamin D alterations, and to explore vitamin D level correlations between age, gender, sun exposure, number of neurofibromas, and number of plexiform neurofibromas. METHODS: This was an observational, cross-sectional, hospital-based study. We obtained a convenience sample of individuals with confirmed diagnosis of NF1 from patients attending the Medical Genetics Service of the IPPMG-UFRJ and Santa Casa de Misericórdia of Rio de Janeiro over a 24-month period. We evaluated vitamin D levels in blood samples of patients with NF1 by a chemiluminescent immunoassay method, and we correlated the results with gender, age, number of neurofibromas, number of plexiform neurofibromas, and satisfactory sun exposure. RESULTS: Of the 55 patients, 28 (50.9%) were female and 27 (49.1%) were male. Patient ages ranged from a minimum of 1.2 to a maximum of 19.6 years (mean age 10.95 years) and the median was 11.11 years. Median and mean body mass index (BMI; z score) were -0.09 (minimum value -1.63 and maximum of 4.62) and 0.16, respectively. The mean value of vitamin D was 30.82 ng/mL (±12.31) and the median was 29 ng/mL (minimum value of 10.40 ng/mL and maximum of 79.19 ng/mL). CONCLUSIONS: The levels of vitamin D did not differ according to gender, age group, or the presence or number of cutaneous neurofibromas. Among patients with adequate sun exposure, there was a higher incidence of sufficient serum vitamin D levels. Patients with cutaneous neurofibromas in the 0 to 11 age group had a greater tendency to vitamin D sufficiency in relation to patients aged 11 to 19 years.

3.
Cell Stress Chaperones ; 19(3): 421-35, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24092395

RESUMO

Heat shock proteins (HSPs) are attractive therapeutic targets for neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS), characterized by aberrant formation of protein aggregates. Although motor neurons have a high threshold for activation of HSP genes, HSP90 inhibitors are effective inducers. This study evaluated NXD30001, a novel, small molecule HSP90 inhibitor based on the radicicol backbone, for its ability to induce neuronal HSPs and for efficacy in an experimental model of ALS based on mutations in superoxide-dismutase 1 (SOD1). In motor neurons of dissociated murine spinal cord cultures, NXD30001-induced expression of HSP70/HSPA1 (iHSP70) and its co-chaperone HSP40/DNAJ through activation of HSF1 and exhibited a protective profile against SOD1(G93A) similar to geldanamycin, but with less toxicity. Treatment prevented protein aggregation, mitochondrial fragmentation, and motor neuron death, important features of mutant SOD1 toxicity, but did not effectively prevent aberrant intracellular Ca(2+) accumulation. NXD30001 distributed to brain and spinal cord of wild-type and SOD1(G93A) transgenic mice following intraperitoneal injection; however, unlike in culture, in vivo levels of SOD1 were not reduced. NXD30001-induced expression of iHSP70 in skeletal and cardiac muscle and, to a lesser extent, in kidney, but not in liver, spinal cord, or brain, with either single or repeated administration. NXD30001 is a very useful experimental tool in culture, but these data point to the complex nature of HSP gene regulation in vivo and the necessity for early evaluation of the efficacy of novel HSP inducers in target tissues in vivo.


Assuntos
Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico/metabolismo , Lactonas/farmacologia , Tecido Nervoso/metabolismo , Oximas/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Cálcio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Homeostase/efeitos dos fármacos , Corpos de Inclusão/metabolismo , Lactonas/administração & dosagem , Lactonas/farmacocinética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Dinâmica Mitocondrial/efeitos dos fármacos , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/metabolismo , Tecido Nervoso/efeitos dos fármacos , Oximas/administração & dosagem , Oximas/farmacocinética , Fosforilação/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/administração & dosagem , Bibliotecas de Moléculas Pequenas/farmacocinética , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1 , Técnicas de Cultura de Tecidos
4.
Clin Cancer Res ; 19(14): 3856-70, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23714726

RESUMO

PURPOSE: The growth and survival of neurofibromatosis type 2 (NF2)-deficient cells are enhanced by the activation of multiple signaling pathways including ErbBs/IGF-1R/Met, PI3K/Akt, and Ras/Raf/Mek/Erk1/2. The chaperone protein HSP90 is essential for the stabilization of these signaling molecules. The aim of the study was to characterize the effect of HSP90 inhibition in various NF2-deficient models. EXPERIMENTAL DESIGN: We tested efficacy of the small-molecule NXD30001, which has been shown to be a potent HSP90 inhibitor. The antiproliferative activity of NXD30001 was tested in NF2-deficient cell lines and in human primary schwannoma and meningioma cultures in vitro. The antitumor efficacy of HSP90 inhibition in vivo was verified in two allograft models and in one NF2 transgenic model. The underlying molecular alteration was further characterized by a global transcriptome approach. RESULTS: NXD30001 induced degradation of client proteins in and suppressed proliferation of NF2-deficient cells. Differential expression analysis identified subsets of genes implicated in cell proliferation, cell survival, vascularization, and Schwann cell differentiation whose expression was altered by NXD30001 treatment. The results showed that NXD30001 in NF2-deficient schwannoma suppressed multiple pathways necessary for tumorigenesis. CONCLUSIONS: HSP90 inhibition showing significant antitumor activity against NF2-related tumor cells in vitro and in vivo represents a promising option for novel NF2 therapies.


Assuntos
Antineoplásicos/farmacologia , Proteínas de Choque Térmico HSP90/metabolismo , Lactonas/farmacologia , Neurofibromatose 2/tratamento farmacológico , Oximas/farmacologia , Animais , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Humanos , Camundongos , Camundongos Nus , Camundongos Transgênicos , Neurofibromatose 2/metabolismo , Proteólise , Transcriptoma/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Mol Cancer Ther ; 9(9): 2618-26, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20643786

RESUMO

Glioblastoma multiforme (GBM) has an abysmal prognosis. We now know that the epidermal growth factor receptor (EGFR) signaling pathway and the loss of function of the tumor suppressor genes p16Ink4a/p19ARF and PTEN play a crucial role in GBM pathogenesis: initiating the early stages of tumor development, sustaining tumor growth, promoting infiltration, and mediating resistance to therapy. We have recently shown that this genetic combination is sufficient to promote the development of GBM in adult mice. Therapeutic agents raised against single targets of the EGFR signaling pathway have proven rather inefficient in GBM therapy, showing the need for combinatorial therapeutic approaches. An effective strategy for concurrent disruption of multiple signaling pathways is via the inhibition of the molecular chaperone heat shock protein 90 (Hsp90). Hsp90 inhibition leads to the degradation of so-called client proteins, many of which are key effectors of GBM pathogenesis. NXD30001 is a novel second generation Hsp90 inhibitor that shows improved pharmacokinetic parameters. Here we show that NXD30001 is a potent inhibitor of GBM cell growth in vitro consistent with its capacity to inhibit several key targets and regulators of GBM biology. We also show the efficacy of NXD30001 in vivo in an EGFR-driven genetically engineered mouse model of GBM. Our findings establish that the Hsp90 inhibitor NXD30001 is a therapeutically multivalent molecule, whose actions strike GBM at the core of its drivers of tumorigenesis and represent a compelling rationale for its use in GBM treatment.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Lactonas/farmacologia , Oximas/farmacologia , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Processos de Crescimento Celular/efeitos dos fármacos , Modelos Animais de Doenças , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Lactonas/farmacocinética , Masculino , Camundongos , Camundongos Transgênicos , Oximas/farmacocinética , Transdução de Sinais/efeitos dos fármacos , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...