Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(3)2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36766751

RESUMO

Through kidney transplantation, ischemia/reperfusion is known to induce tissular injury due to cell energy shortage, oxidative stress, and endoplasmic reticulum (ER) stress. ER stress stems from an accumulation of unfolded or misfolded proteins in the lumen of ER, resulting in the unfolded protein response (UPR). Adaptive UPR pathways can either restore protein homeostasis or can turn into a stress pathway leading to apoptosis. We have demonstrated that N1-guanyl-1,7-diamineoheptane (GC7), a specific inhibitor of eukaryotic Initiation Factor 5A (eIF5A) hypusination, confers an ischemic protection of kidney cells by tuning their metabolism and decreasing oxidative stress, but its role on ER stress was unknown. To explore this, we used kidney cells pretreated with GC7 and submitted to either warm or cold anoxia. GC7 pretreatment promoted cell survival in an anoxic environment concomitantly to an increase in xbp1 splicing and BiP level while eiF2α phosphorylation and ATF6 nuclear level decreased. These demonstrated a specific modulation of UPR pathways. Interestingly, the pharmacological inhibition of xbp1 splicing reversed the protective effect of GC7 against anoxia. Our results demonstrated that eIF5A hypusination inhibition modulates distinctive UPR pathways, a crucial mechanism for the protection against anoxia/reoxygenation.


Assuntos
Estresse do Retículo Endoplasmático , Isquemia , Rim , Fatores de Iniciação de Peptídeos , Traumatismo por Reperfusão , Humanos , Estresse do Retículo Endoplasmático/genética , Estresse do Retículo Endoplasmático/fisiologia , Hipóxia/genética , Hipóxia/metabolismo , Isquemia/genética , Isquemia/metabolismo , Rim/irrigação sanguínea , Rim/metabolismo , Fatores de Iniciação de Peptídeos/genética , Fatores de Iniciação de Peptídeos/metabolismo , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Resposta a Proteínas não Dobradas , Fator de Iniciação de Tradução Eucariótico 5A
2.
Biomedicines ; 10(7)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35884801

RESUMO

Liver fibrosis is associated with arterial calcification (AC). Since the liver is a source of inorganic pyrophosphate (PPi), an anti-calcifying compound, we investigated the relationship between plasma PPi ([PPi]pl), liver fibrosis, liver function, AC, and the hepatic expression of genes regulating PPi homeostasis. To that aim, we compared [PPi]pl before liver transplantation (LT) and 3 months after LT. We also assessed the expression of four key regulators of PPi in liver tissues and established correlations between AC, and scores of liver fibrosis and liver failure in these patients. LT candidates with various liver diseases were included. AC scores were assessed in coronary arteries, abdominal aorta, and aortic valves. Liver fibrosis was evaluated on liver biopsies and from non-invasive tests (FIB-4 and APRI scores). Liver functions were assessed by measuring serum albumin, ALBI, MELD, and Pugh−Child scores. An enzymatic assay was used to dose [PPi]pl. A group of patients without liver alterations from a previous cohort provided a control group. Gene expression assays were performed with mRNA extracted from liver biopsies and compared between LT recipients and the control individuals. [PPi]pl negatively correlated with APRI (r = −0.57, p = 0.001, n = 29) and FIB-4 (r = −0.47, p = 0.006, n = 29) but not with interstitial fibrosis index from liver biopsies (r = 0.07, p = 0.40, n = 16). Serum albumin positively correlated with [PPi]pl (r = 0.71; p < 0.0001, n = 20). ALBI, MELD, and Pugh−Child scores correlated negatively with [PPi]pl (r = −0.60, p = 0.0005; r = −0.56, p = 0.002; r = −0.41, p = 0.02, respectively, with n = 20). Liver fibrosis assessed on liver biopsies by FIB-4 and by APRI positively correlated with coronary AC (r = 0.51, p = 0.02, n = 16; r = 0.58, p = 0.009, n = 20; r = 0.41, p = 0.04, n = 20, respectively) and with abdominal aorta AC (r = 0.50, p = 0.02, n = 16; r = 0.67, p = 0.002, n = 20; r = 0.61, p = 0.04, n = 20, respectively). FIB-4 also positively correlated with aortic valve calcification (r = 0.40, p = 0.046, n = 20). The key regulator genes of PPi production in liver were lower in patients undergoing liver transplantation as compared to controls. Three months after surgery, serum albumin levels were restored to physiological levels (40 [37−44] vs. 35 [30−40], p = 0.009) and [PPi]pl was normalized (1.40 [1.07−1.86] vs. 0.68 [0.53−0.80] µmol/L, p = 0.0005, n = 12). Liver failure and/or fibrosis correlated with AC in several arterial beds and were associated with low plasma PPi and dysregulation of key proteins involved in PPi homeostasis. Liver transplantation normalized these parameters.

3.
J Clin Med ; 11(9)2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35566717

RESUMO

Pseudoxanthoma elasticum (PXE; OMIM 264800) is an autosomal recessive metabolic disorder characterized by progressive calcification in the skin, the Bruch's membrane, and the vasculature. Calcification in PXE results from a low level of circulating pyrophosphate (PPi) caused by ABCC6 deficiency. In this study, we used a cohort of 107 PXE patients to determine the pathophysiological relationship between plasma PPi, coronary calcification (CAC), lower limbs arterial calcification (LLAC), and disease severity. Overall, our data showed a deficit in plasma PPi in PXE patients compared to controls. Remarkably, affected females showed higher PPi levels than males, but a lower LLAC. There was a strong correlation between age and PPi in PXE patients (r = 0.423, p < 0.0001) but not in controls (r = 0.059, p = 0.828). A weak correlation was found between PPi and CAC (r = 0.266, p < 0.02); however, there was no statistically significant connection with LLAC (r = 0.068, p = 0.518) or a severity score (r = 0.077, p = 0.429). Surprisingly, we found no significant correlation between plasma alkaline phosphatase activity and PPi (r = 0.113, p = 0.252) or between a 10-year cardiovascular risk score and all other variables. Multivariate analysis confirmed that LLAC and CAC were strongly dependent on age, but not on PPi. Our data showed that arterial calcification is only weakly linked to circulating PPi levels and that time (i.e., age) appears to be the major determinant of disease severity and calcification in PXE. These data are important to better understand the natural history of this disease but also for the follow-up and management of patients, and the design of future clinical trials. Our results also show that PPi is not a good biomarker for the evaluation of disease severity and progression.

4.
Cell Physiol Biochem ; 55(S1): 106-118, 2021 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-33711227

RESUMO

More than three decades after their first biophysical description, Volume Regulated Anion Channels (VRACs) still remain challenging to understand. Initially, VRACs were identified as the main pathway for the cell to extrude Cl- ions during the regulatory volume decrease (RVD) mechanism contributing in fine to the recovery of normal cell volume. For years, scientists have tried unsuccessfully to find their molecular identity, leading to controversy within the field that only ended in 2014 when two independent groups demonstrated that VRACs were formed by heteromers of LRRC8 proteins. This breakthrough gave a second breath to the research field and was followed by many publications regarding LRRC8/VRACs structure/ function, physiological roles and 3D structures. Nevertheless, far from simplifying the field, these discoveries have instead exponentially increased its complexity. Indeed, the channel's biophysical properties seem to be dependent on the LRRC8 subunits composition with each heteromer showing different ion/molecule permeabilities and regulatory mechanisms. One clear example of this complexity is the intricate relationship between LRRC8/VRACs and the redox system. On one hand, VRACs appear to be directly regulated by oxidation or reduction depending on their subunit composition. On the other hand, VRACs can also impact the redox balance within the cells, through their permeability to reduced glutathione or through other as yet uncharacterized pathways. Unravelling this issue is particularly crucial as LRRC8/VRACs play an important role in a wide variety of physiological processes involving oxidative stress signaling. In this regard, we have tried to systematically identify in the literature both preand post-LRRC8 discovery as well as the interplay between VRACs and the redox system to provide new insights into this complex relationship.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Tamanho Celular , Glutationa/metabolismo , Humanos , Proteínas de Membrana/genética , Oxirredução , Estresse Oxidativo/genética , Estresse Oxidativo/fisiologia
6.
Cell Death Dis ; 12(4): 283, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33731685

RESUMO

Inhibition of the eukaryotic initiation factor 5A activation by the spermidine analogue GC7 has been shown to protect proximal cells and whole kidneys against an acute episode of ischaemia. The highlighted mechanism involves a metabolic switch from oxidative phosphorylation toward glycolysis allowing cells to be transiently independent of oxygen supply. Here we show that GC7 decreases protein expression of the renal GLUT1 glucose transporter leading to a decrease in transcellular glucose flux. At the same time, GC7 modifies the native energy source of the proximal cells from glutamine toward glucose use. Thus, GC7 acutely and reversibly reprogrammes function and metabolism of kidney cells to make glucose its single substrate, and thus allowing cells to be oxygen independent through anaerobic glycolysis. The physiological consequences are an increase in the renal excretion of glucose and lactate reflecting a decrease in glucose reabsorption and an increased glycolysis. Such a reversible reprogramming of glucose handling and oxygen dependence of kidney cells by GC7 represents a pharmacological opportunity in ischaemic as well as hyperglycaemia-associated pathologies from renal origin.


Assuntos
Glucose/metabolismo , Rim/metabolismo , Fatores de Iniciação de Peptídeos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Masculino , Camundongos , Fator de Iniciação de Tradução Eucariótico 5A
7.
JCI Insight ; 6(3)2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33400689

RESUMO

The role of insulin receptor (IR) activated by hyperinsulinemia in obesity-induced kidney injury is not well understood. We hypothesized that activation of kidney proximal tubule epithelial IR contributes to obesity-induced kidney injury. We administered normal-fat diet (NFD) or high-fat diet (HFD) to control and kidney proximal tubule IR-knockout (KPTIRKO) mice for 4 months. Renal cortical IR expression was decreased by 60% in male and female KPTIRKO mice. Baseline serum glucose, serum creatinine, and the ratio of urinary albumin to creatinine (ACR) were similar in KPTIRKO mice compared to those of controls. On HFD, weight gain and increase in serum cholesterol were similar in control and KPTIRKO mice; blood glucose did not change. HFD increased the following parameters in the male control mice: renal cortical contents of phosphorylated IR and Akt, matrix proteins, urinary ACR, urinary kidney injury molecule-1-to-creatinine ratio, and systolic blood pressure. Renal cortical generation of hydrogen sulfide was reduced in HFD-fed male control mice. All of these parameters were ameliorated in male KPTIRKO mice. Interestingly, female mice were resistant to HFD-induced kidney injury in both genotypes. We conclude that HFD-induced kidney injury requires renal proximal tubule IR activation in male mice.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Túbulos Renais Proximais/metabolismo , Receptor de Insulina/metabolismo , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/metabolismo , Animais , Epitélio/metabolismo , Feminino , Sulfeto de Hidrogênio/metabolismo , Resistência à Insulina , Córtex Renal/metabolismo , Masculino , Camundongos , Camundongos Knockout , Obesidade/complicações , Obesidade/metabolismo , Receptor de Insulina/deficiência , Receptor de Insulina/genética , Fatores Sexuais , Transdução de Sinais
8.
Nephrol Dial Transplant ; 36(6): 988-997, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33367789

RESUMO

BACKGROUND: The nicotinamide adenine dinucleotide phosphate oxidase isoform 4 (Nox4) mediates reactive oxygen species (ROS) production and renal fibrosis in diabetic kidney disease (DKD) at the level of the podocyte. However, the mitochondrial localization of Nox4 and its role as a mitochondrial bioenergetic sensor has recently been reported. Whether Nox4 drives pathology in DKD within the proximal tubular compartment, which is densely packed with mitochondria, is not yet known. METHODS: We generated a proximal tubular-specific Nox4 knockout mouse model by breeding Nox4flox/flox mice with mice expressing Cre recombinase under the control of the sodium-glucose cotransporter-2 promoter. Subsets of Nox4ptKO mice and their Nox4flox/flox littermates were injected with streptozotocin (STZ) to induce diabetes. Mice were followed for 20 weeks and renal injury was assessed. RESULTS: Genetic ablation of proximal tubular Nox4 (Nox4ptKO) resulted in no change in renal function and histology. Nox4ptKO mice and Nox4flox/flox littermates injected with STZ exhibited the hallmarks of DKD, including hyperfiltration, albuminuria, renal fibrosis and glomerulosclerosis. Surprisingly, diabetes-induced renal injury was not improved in Nox4ptKO STZ mice compared with Nox4flox/flox STZ mice. Although diabetes conferred ROS overproduction and increased the mitochondrial oxygen consumption rate, proximal tubular deletion of Nox4 did not normalize oxidative stress or mitochondrial bioenergetics. CONCLUSIONS: Taken together, these results demonstrate that genetic deletion of Nox4 from the proximal tubules does not influence DKD development, indicating that Nox4 localization within this highly energetic compartment is dispensable for chronic kidney disease pathogenesis in the setting of diabetes.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Animais , Nefropatias Diabéticas/genética , Rim , Túbulos Renais , Túbulos Renais Proximais , Camundongos , NADP , NADPH Oxidase 4/genética , NADPH Oxidases/genética , Espécies Reativas de Oxigênio
9.
Int J Mol Sci ; 23(1)2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-35008578

RESUMO

Lesions issued from the ischemia/reperfusion (I/R) stress are a major challenge in human pathophysiology. Of human organs, the kidney is highly sensitive to I/R because of its high oxygen demand and poor regenerative capacity. Previous studies have shown that targeting the hypusination pathway of eIF5A through GC7 greatly improves ischemic tolerance and can be applied successfully to kidney transplants. The protection process correlates with a metabolic shift from oxidative phosphorylation to glycolysis. Because the protein kinase B Akt is involved in ischemic protective mechanisms and glucose metabolism, we looked for a link between the effects of GC7 and Akt in proximal kidney cells exposed to anoxia or the mitotoxic myxothiazol. We found that GC7 treatment resulted in impaired Akt phosphorylation at the Ser473 and Thr308 sites, so the effects of direct Akt inhibition as a preconditioning protocol on ischemic tolerance were investigated. We evidenced that Akt inhibitors provide huge protection for kidney cells against ischemia and myxothiazol. The pro-survival effect of Akt inhibitors, which is reversible, implied a decrease in mitochondrial ROS production but was not related to metabolic changes or an antioxidant defense increase. Therefore, the inhibition of Akt can be considered as a preconditioning treatment against ischemia.


Assuntos
Hipóxia/tratamento farmacológico , Rim/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Animais , Antioxidantes/farmacologia , Células Cultivadas , Hipóxia/metabolismo , Precondicionamento Isquêmico/métodos , Rim/metabolismo , Metacrilatos/farmacologia , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fosforilação/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Tiazóis/farmacologia
10.
Front Cell Dev Biol ; 8: 586831, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33425894

RESUMO

INTRODUCTION: Patients on dialysis and kidney transplant recipients (KTR) present the syndrome of mineral and bone disorders (MBD), which share common traits with monogenic calcifying diseases related to disturbances of the purinergic system. Low plasma levels of inorganic pyrophosphate (PPi) and ectopic vascular calcifications belong to these two conditions. This suggests that the purinergic system may be altered in chronic kidney disease with MBD. Therefore, we perform a transversal pilot study in order to compare the determinants of PPi homeostasis and the plasma levels of PPi in patients on dialysis, in KTR and in healthy people. PATIENTS AND METHODS: We included 10 controls, 10 patients on maintenance dialysis, 10 early KTR 3 ± 1 months after transplantation and nine late KTR 24 ± 3 months after transplantation. We measured aortic calcifications, plasma and urine levels of PPi, the renal fractional excretion of PPi (FePPi), nucleoside triphosphate hydrolase (NPP) and ALP activities in plasma. Correlations and comparisons were assessed with non-parametric tests. RESULTS: Low PPi was found in patients on dialysis [1.11 (0.88-1.35), p = 0.004], in early KTR [0.91 (0.66-0.98), p = 0.0003] and in late KTR [1.16 (1.07-1.45), p = 0.02] compared to controls [1.66 (1.31-1.72) µmol/L]. Arterial calcifications were higher in patients on dialysis than in controls [9 (1-75) vs. 399 (25-526) calcium score/cm2, p < 0.05]. ALP activity was augmented in patients on dialysis [113 (74-160), p = 0.01] and in early KTR [120 (84-142), p = 0.002] compared to controls [64 (56-70) UI/L]. The activity of NPP and FePPi were not different between groups. ALP activity was negatively correlated with PPi (r = -0.49, p = 0.001). DISCUSSION: Patients on dialysis and KTR have low plasma levels of PPi, which are partly related to high ALP activity, but neither to low NPP activity, nor to increased renal excretion of PPi. Further work is necessary to explore comprehensively the purinergic system in chronic kidney disease.

11.
Cell Death Dis ; 10(12): 925, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31804464

RESUMO

Volume-regulated anion channels (VRAC) are chloride channels activated in response to osmotic stress to regulate cellular volume and also participate in other cellular processes, including cell division and cell death. Recently, members of the LRRC8 family have been identified as the main contributors of VRAC conductance. LRRC8/VRAC is permeable to chloride ions but also exhibits significant permeability to various substrates that vary strongly in charge and size. In this study, we explored the intriguing ability of LRRC8/VRAC to transport glutathione (GSH), the major cellular reactive oxygen species (ROS) scavenger, and its involvement in epithelial-to-mesenchymal transition (EMT), a cellular process in which cellular oxidative status is a crucial step. First, in HEK293-WT cells, we showed that a hypotonic condition induced LRRC8/VRAC-dependent GSH conductance (PGSH/PCl of ~0.1) and a marked decrease in intracellular GSH content. GSH currents and GSH intracellular decrease were both inhibited by DCPIB, an inhibitor of LRRC8/VRAC, and were not observed in HEK293-LRRC8A KO cells. Then, we induced EMT by exposing renal proximal tubule epithelial cells to the pleiotropic growth factor TGFß1, and we measured the contribution of LRRC8/VRAC in this process by measuring (i) EMT marker expression (assessed both at the gene and protein levels), (ii) cell morphology and (iii) the increase in migration ability. Interestingly, pharmacologic targeting of LRRC8/VRAC (DCPIB) or RNA interference-mediated inhibition (LRRC8A siRNA) attenuated the TGFß1-induced EMT response by controlling GSH and ROS levels. Interestingly, TGFß1 exposure triggered DCPIB-sensitive chloride conductance. These results suggest that LRRC8/VRAC, due to its native permeability to GSH and thus its ability to modulate ROS levels, plays a critical role in EMT and might contribute to other physiological and pathophysiological processes associated with oxidative stress.


Assuntos
Transição Epitelial-Mesenquimal/genética , Glutationa/metabolismo , Proteínas de Membrana/genética , Fator de Crescimento Transformador beta1/genética , Animais , Ânions/metabolismo , Glutationa/genética , Células HEK293 , Humanos , Pressão Osmótica/efeitos dos fármacos , Permeabilidade/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Canais de Ânion Dependentes de Voltagem/genética , Canais de Ânion Dependentes de Voltagem/metabolismo
12.
Am J Pathol ; 189(11): 2171-2180, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31449775

RESUMO

Most kidney stones are made of calcium oxalate crystals. Randall's plaque, an apatite deposit at the tip of the renal papilla, is considered to at the origin of these stones. Hypercalciuria may promote Randall's plaque formation and growth. We analyzed whether long-term exposure of Abcc6-/- mice (a murine model of Randall's plaque) to vitamin D supplementation, with or without a calcium-rich diet, would accelerate the formation of Randall's plaque. Eight groups of mice (including Abcc6-/- and wild type) received vitamin D alone (100,000 UI/kg every 2 weeks), a calcium-enriched diet alone (calcium gluconate 2 g/L in drinking water), both vitamin D supplementation and a calcium-rich diet, or a standard diet (controls) for 6 months. Kidney calcifications were assessed by 3-dimensional microcomputed tomography, µ-Fourier transform infrared spectroscopy, field emission-scanning electron microscopy, transmission electron microscopy, and Yasue staining. At 6 months, Abcc6-/- mice exposed to vitamin D and calcium supplementation developed massive Randall's plaque when compared with control Abcc6-/- mice (P < 0.01). Wild-type animals did not develop significant calcifications when exposed to vitamin D. Combined administration of vitamin D and calcium significantly accelerates Randall's plaque formation in a murine model. This original model raises concerns about the cumulative risk of vitamin D supplementation and calcium intakes in Randall's plaque formation.


Assuntos
Cálcio da Dieta/efeitos adversos , Suplementos Nutricionais/efeitos adversos , Cálculos Renais/induzido quimicamente , Medula Renal/metabolismo , Vitamina D/efeitos adversos , Animais , Calcinose/induzido quimicamente , Calcinose/metabolismo , Calcinose/patologia , Cálcio da Dieta/administração & dosagem , Modelos Animais de Doenças , Progressão da Doença , Feminino , Cálculos Renais/metabolismo , Cálculos Renais/patologia , Medula Renal/patologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Fatores de Tempo , Vitamina D/administração & dosagem
13.
Hypertension ; 74(3): 526-535, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31352824

RESUMO

The present study directly tested the hypothesis that the NHE3 (Na+/H+ exchanger 3) in the proximal tubules of the kidney is required for the development of Ang II (angiotensin II)-induced hypertension using PT-Nhe3-/- (proximal tubule-specific NHE3 knockout) mice. Specifically, PT-Nhe3-/- mice were generated using the SGLT2-Cre/Nhe3loxlox approach, whereas Ang II-induced hypertension was studied in 12 groups (n=5-12 per group) of adult male and female wild-type (WT) and PT-Nhe3-/- mice. Under basal conditions, systolic blood pressure, diastolic blood pressure, and mean arterial blood pressure were significantly lower in male and female PT-Nhe3-/- than WT mice (P<0.01). A high pressor, 1.5 mg/kg per day, intraperitoneal or a slow pressor dose of Ang II, 0.5 mg/kg per day, intraperitoneal for 2 weeks significantly increased systolic blood pressure, diastolic blood pressure, and mean arterial blood pressure in male and female WT mice (P<0.01), but the hypertensive response to Ang II was markedly attenuated in male and female PT-Nhe3-/- mice (P<0.01). Ang II impaired the pressure-natriuresis response in WT mice, whereas proximal tubule-specific deletion of NHE3 improved the pressure-natriuresis response in Ang II-infused PT-Nhe3-/- mice (P<0.01). AT1 receptor blocker losartan completely blocked Ang II-induced hypertension in both WT and PT-Nhe3-/- mice (P<0.01). However, inhibition of nitric oxide synthase with L-NG-Nitroarginine methyl ester had no effect on Ang II-induced hypertension in WT or PT-Nhe3-/- mice (not significant). Furthermore, Ang II-induced hypertension was significantly attenuated by an orally absorbable NHE3 inhibitor AVE0657. In conclusion, NHE3 in the proximal tubules of the kidney may be a therapeutical target in hypertension induced by Ang II or with increased NHE3 expression in the proximal tubules.


Assuntos
Angiotensina II/farmacologia , Túbulos Renais Proximais/metabolismo , Losartan/administração & dosagem , Receptor Tipo 1 de Angiotensina/metabolismo , Trocador 3 de Sódio-Hidrogênio/genética , Animais , Modelos Animais de Doenças , Feminino , Hipertensão/induzido quimicamente , Hipertensão/tratamento farmacológico , Hipertensão/fisiopatologia , Injeções Intraperitoneais , Túbulos Renais Proximais/patologia , Masculino , Camundongos , Camundongos Knockout , Distribuição Aleatória , Valores de Referência , Trocadores de Sódio-Hidrogênio/metabolismo , Resultado do Tratamento
14.
Nat Commun ; 10(1): 2024, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-31048699

RESUMO

Mutations in the polycystins cause autosomal dominant polycystic kidney disease (ADPKD). Here we show that transmembrane protein 33 (TMEM33) interacts with the ion channel polycystin-2 (PC2) at the endoplasmic reticulum (ER) membrane, enhancing its opening over the whole physiological calcium range in ER liposomes fused to planar bilayers. Consequently, TMEM33 reduces intracellular calcium content in a PC2-dependent manner, impairs lysosomal calcium refilling, causes cathepsins translocation, inhibition of autophagic flux upon ER stress, as well as sensitization to apoptosis. Invalidation of TMEM33 in the mouse exerts a potent protection against renal ER stress. By contrast, TMEM33 does not influence pkd2-dependent renal cystogenesis in the zebrafish. Together, our results identify a key role for TMEM33 in the regulation of intracellular calcium homeostasis of renal proximal convoluted tubule cells and establish a causal link between TMEM33 and acute kidney injury.


Assuntos
Injúria Renal Aguda/patologia , Cálcio/metabolismo , Túbulos Renais Proximais/metabolismo , Proteínas de Membrana/metabolismo , Canais de Cátion TRPP/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Injúria Renal Aguda/genética , Animais , Membrana Celular/metabolismo , Modelos Animais de Doenças , Embrião não Mamífero , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Túbulos Renais Proximais/citologia , Lisossomos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Knockout , Mutação , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/patologia , RNA Interferente Pequeno/metabolismo , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/fisiologia , Peixe-Zebra , Proteínas de Peixe-Zebra/fisiologia
15.
Hypertension ; 72(6): 1328-1336, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30571224

RESUMO

The present study directly tested the hypothesis that deletion of the NHE3 (Na+/H+ exchanger 3) selectively in the proximal tubules of the kidney lowers basal blood pressure by increasing the pressure-natriuresis response in mice. Adult male and female, age-matched wild-type (WT) littermates and proximal tubule-specific NHE3 knockout mice (PT- Nhe3-/-; n=6-16 per group) were studied for (1) basal phenotypes of electrolytes and pH, blood pressure, and kidney function; (2) the pressure-natriuresis response using the mesenteric, celiac, and abdominal arterial occlusion technique; and (3) the natriuretic responses to acute saline expansion (0.9% NaCl, 10% body weight, intraperitoneal) or 2-week of 2% NaCl diet. Under basal conditions, PT- Nhe3-/- mice showed significantly lower systolic, diastolic, and mean arterial blood pressure ( P<0.01) than WT mice ( P<0.01). PT- Nhe3-/- mice also exhibited significantly greater diuretic ( P<0.01) and natriuretic responses than WT mice ( P<0.01), without altering 24-hour fecal Na+ excretion, plasma pH, Na+, and bicarbonate levels. In response to increased renal perfusion pressure by 30 mm Hg, the pressure-natriuresis response increased 5-fold in WT mice ( P<0.01), but it increased 8-fold in PT- Nhe3-/- mice ( P<0.01). In response to 10% acute saline expansion or 2-week 2% NaCl diet, more pronounced natriuretic responses were demonstrated in PT- Nhe3-/- than WT mice ( P<0.01). Our results support the scientific premise and physiological relevance that NHE3 in the proximal tubules plays an essential role in maintaining basal blood pressure homeostasis, and genetic deletion of NHE3 selectively in the proximal tubules of the kidney lowers blood pressure by increasing the pressure natriuretic response.


Assuntos
Pressão Sanguínea/fisiologia , Túbulos Renais Proximais/metabolismo , Natriurese/fisiologia , Trocador 3 de Sódio-Hidrogênio/metabolismo , Animais , Rim/metabolismo , Camundongos , Camundongos Knockout , Cloreto de Sódio na Dieta , Trocador 3 de Sódio-Hidrogênio/genética
17.
Front Pharmacol ; 8: 328, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28620305

RESUMO

Chloride channels play an essential role in a variety of physiological functions and in human diseases. Historically, the field of chloride channels has long been neglected owing to the lack of powerful selective pharmacological agents that are needed to overcome the technical challenge of characterizing the molecular identities of these channels. Recently, members of the LRRC8 family have been shown to be essential for generating the volume-regulated anion channel (VRAC) current, a chloride conductance that governs the regulatory volume decrease (RVD) process. The inhibitory effects of six commonly used chloride channel inhibitors on VRAC/LRRC8-mediated chloride transport were tested in wild-type HEK-293 cells expressing LRRC8 proteins and devoid of other types of chloride channels (CFTR and ANO1/2). We explored the effectiveness of the inhibitors using the patch-clamp whole-cell approach and fluorescence-based quantification of cellular volume changes during hypotonic challenge. Both DCPIB and NFA inhibited VRAC current in a whole-cell configuration, with IC50 values of 5 ± 1 µM and 55 ± 2 µM, respectively. Surprisingly, GlyH-101 and PPQ-102, two CFTR inhibitors, also inhibited VRAC conductance at concentrations in the range of their current use, with IC50 values of 10 ± 1 µM and 20 ± 1 µM, respectively. T16Ainh-A01, a so-called specific inhibitor of calcium-activated Cl- conductance, blocked the chloride current triggered by hypo-osmotic challenge, with an IC50 of 6 ± 1 µM. Moreover, RVD following hypotonic challenge was dramatically reduced by these inhibitors. CFTRinh-172 was the only inhibitor that had almost no effect on VRAC/LRRC8-mediated chloride conductance. All inhibitors tested except CFTRinh-172 inhibited VRAC/LRRC8-mediated chloride conductance and cellular volume changes during hypotonic challenge. These results shed light on the apparent lack of chloride channel inhibitors specificity and raise the question of how these inhibitors actually block chloride conductances.

18.
J Am Soc Nephrol ; 28(3): 811-822, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27612998

RESUMO

The eukaryotic initiation factor 5A (eIF5A), which is highly conserved throughout evolution, has the unique characteristic of post-translational activation through hypusination. This modification is catalyzed by two enzymatic steps involving deoxyhypusine synthase (DHPS) and deoxyhypusine hydroxylase (DOHH). Notably, eIF5A may be involved in regulating the lifespan of Drosophila during long-term hypoxia. Therefore, we investigated the possibility of a link between eIF5A hypusination and cellular resistance to hypoxia/anoxia. Pharmacologic targeting of DHPS by N1-guanyl-1,7-diaminoheptane (GC7) or RNA interference-mediated inhibition of DHPS or DOHH induced tolerance to anoxia in immortalized mouse renal proximal cells. Furthermore, GC7 treatment of cells reversibly induced a metabolic shift toward glycolysis as well as mitochondrial remodeling and led to downregulated expression and activity of respiratory chain complexes, features characteristic of mitochondrial silencing. GC7 treatment also attenuated anoxia-induced generation of reactive oxygen species in these cells and in normoxic conditions, decreased the mitochondrial oxygen consumption rate of cultured cells and mice. In rats, intraperitoneal injection of GC7 substantially reduced renal levels of hypusinated eIF5A and protected against ischemia-reperfusion-induced renal injury. Finally, in the preclinical pig kidney transplant model, intravenous injection of GC7 before kidney removal significantly improved graft function recovery and late graft function and reduced interstitial fibrosis after transplant. This unconventional signaling pathway offers an innovative therapeutic target for treating hypoxic-ischemic human diseases and organ transplantation.


Assuntos
Morte Celular/efeitos dos fármacos , Transplante de Rim , Lisina/análogos & derivados , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/fisiologia , Fatores de Iniciação de Peptídeos/efeitos dos fármacos , Proteínas de Ligação a RNA/efeitos dos fármacos , Animais , Hipóxia Celular/efeitos dos fármacos , Células Cultivadas , Feminino , Lisina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxigenases de Função Mista , Ratos , Ratos Wistar , Suínos , Resultado do Tratamento , Fator de Iniciação de Tradução Eucariótico 5A
19.
Endocrinology ; 157(2): 497-507, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26671181

RESUMO

PTH regulates serum calcium, phosphate, and 1,25-dihydroxyvitamin D (1,25(OH)2D) levels by acting on bone and kidney. In renal proximal tubules (PTs), PTH inhibits reabsorption of phosphate and stimulates the synthesis of 1,25(OH)2D. The PTH receptor couples to multiple G proteins. We here ablated the α-subunit of the stimulatory G protein (Gsα) in mouse PTs by using Cre recombinase driven by the promoter of type-2 sodium-glucose cotransporter (Gsα(Sglt2KO) mice). Gsα(Sglt2KO) mice were normophosphatemic but displayed, relative to controls, hypocalcemia (1.19 ±0.01 vs 1.23 ±0.01 mmol/L; P < .05), reduced serum 1,25(OH)2D (59.3 ±7.0 vs 102.5 ±12.2 pmol/L; P < .05), and elevated serum PTH (834 ±133 vs 438 ±59 pg/mL; P < .05). PTH-induced elevation in urinary cAMP excretion was blunted in Gsα(Sglt2KO) mice (2- vs 4-fold over baseline in controls; P < .05). Relative to baseline in controls, PTH-induced reduction in serum phosphate tended to be blunted in Gsα(Sglt2KO) mice (-0.39 ±0.33 vs -1.34 ±0.36 mg/dL; P = .07). Gsα(Sglt2KO) mice showed elevated renal vitamin D 24-hydroxylase and bone fibroblast growth factor-23 (FGF23) mRNA abundance (∼3.4- and ∼11-fold over controls, respectively; P < .05) and tended to have elevated serum FGF23 (829 ±76 vs 632 ±60 pg/mL in controls; P = .07). Heterozygous mice having constitutive ablation of the maternal Gsα allele (E1(m-/+)) (model of pseudohypoparathyroidism type-Ia), in which Gsα levels in PT are reduced, also exhibited elevated serum FGF23 (474 ±20 vs 374 ±27 pg/mL in controls; P < .05). Our findings indicate that Gsα is required in PTs for suppressing renal vitamin D 24-hydroxylase mRNA levels and for maintaining normal serum 1,25(OH)2D.


Assuntos
Resistência a Medicamentos/genética , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Túbulos Renais Proximais/metabolismo , Hormônio Paratireóideo/farmacologia , Pseudopseudo-Hipoparatireoidismo/genética , Vitamina D3 24-Hidroxilase/genética , Vitamina D/análogos & derivados , Animais , Modelos Animais de Doenças , Regulação para Baixo/genética , Feminino , Fator de Crescimento de Fibroblastos 23 , Túbulos Renais Proximais/patologia , Masculino , Camundongos , Camundongos Knockout , Hormônio Paratireóideo/metabolismo , Pseudopseudo-Hipoparatireoidismo/patologia , RNA Mensageiro/metabolismo , Regulação para Cima/genética , Vitamina D/sangue , Vitamina D3 24-Hidroxilase/metabolismo
20.
Kidney Int ; 88(5): 1057-69, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26083655

RESUMO

The study of kidney cancer pathogenesis and its treatment has been limited by the scarcity of genetically defined animal models. The FLCN gene that codes for the protein folliculin, mutated in Birt-Hogg-Dubé syndrome, presents a new target for mouse modeling of kidney cancer. Here we developed a kidney-specific knockout model by disrupting the mouse Flcn in the proximal tubules, thus avoiding homozygous embryonic lethality or neonatal mortality, and eliminating the requirement of loss of heterozygosity for tumorigenesis. This knockout develops renal cysts and early onset (6 months) of multiple histological subtypes of renal neoplasms featuring high tumor penetrance. Although the majority of the tumors were chromophobe renal cell carcinomas in affected mice under 1 year of age, papillary renal cell carcinomas predominated in the kidneys of older knockout mice. This renal neoplasia from cystic hyperplasia at 4 months to high-grade renal tumors by 16 months represented the progression of tumorigenesis. The mTOR and TGF-ß signalings were upregulated in Flcn-deficient tumors, and these two activated pathways may synergetically cause renal tumorigenesis. Treatment of knockout mice with the mTOR inhibitor rapamycin for 10 months led to the suppression of tumor growth. Thus, our model recapitulates human Birt-Hogg-Dubé kidney tumorigenesis, provides a valuable tool for further study of Flcn-deficient renal tumorigenesis, and tests new drugs/approaches to their treatment.


Assuntos
Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Cistos/patologia , Modelos Animais de Doenças , Neoplasias Renais/genética , Neoplasias Renais/patologia , Túbulos Renais Proximais/patologia , Proteínas Proto-Oncogênicas/genética , Proteínas Supressoras de Tumor/genética , Animais , Antibióticos Antineoplásicos/uso terapêutico , Carcinogênese/genética , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/metabolismo , Cistos/genética , Hiperplasia/patologia , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/metabolismo , Camundongos , Camundongos Knockout , Transdução de Sinais , Sirolimo/uso terapêutico , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Fator de Crescimento Transformador beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...