Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Appl ; : e3005, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38923678

RESUMO

Global policies increasingly focus on the importance of maintaining or improving the integrity of ecosystems, but defining, assessing, and monitoring integrity in marine protected areas (MPAs) remains a challenge. In this paper, we conceptualized ecological integrity along dimensions of heterogeneity and stability containing seven components: physical structure, diversity, function, persistence, resistance, resilience, and natural variability. Through a structured literature search, we identified indicators and metrics used for quantifying ecosystem status components in the marine environment, then reviewed MPA management plans worldwide for inclusion of these components. We evaluated 202 papers applying 83 ecological indicators built from 72 metrics. Ecosystem components were most comprehensively addressed by metrics of taxa presence, organisms count, and area occupied by benthic organisms, and community structure, biomass, and percent cover indicators. Of the 557 MPA management plans we reviewed globally, 93% used at least one ecosystem status term or its synonym in an ecologically relevant context, but 39% did not address any components of stability. In particular, resistance was mentioned in only 1% of management plans, but in some cases it may be inferred from indicators and metrics used to track the best addressed component in management plans, diversity. Plans for MPAs with both an ecological/biological purpose and a research and education purpose contained ecosystem status terms more frequently than other plans, suggesting that engagement with the scientific community may have improved the application of these terms. An improved understanding of how to operationalize and measure ecological integrity can help MPA monitoring and management.

2.
Philos Trans R Soc Lond B Biol Sci ; 378(1881): 20220191, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37246387

RESUMO

In the coming decades, warming and deoxygenation of marine waters are anticipated to result in shifts in the distribution and abundance of fishes, with consequences for the diversity and composition of fish communities. Here, we combine fisheries-independent trawl survey data spanning the west coast of the USA and Canada with high-resolution regional ocean models to make projections of how 34 groundfish species will be impacted by changes in temperature and oxygen in British Columbia (BC) and Washington. In this region, species that are projected to decrease in occurrence are roughly balanced by those that are projected to increase, resulting in considerable compositional turnover. Many, but not all, species are projected to shift to deeper depths as conditions warm, but low oxygen will limit how deep they can go. Thus, biodiversity will likely decrease in the shallowest waters (less than 100 m), where warming will be greatest, increase at mid-depths (100-600 m) as shallow species shift deeper, and decrease at depths where oxygen is limited (greater than 600 m). These results highlight the critical importance of accounting for the joint role of temperature, oxygen and depth when projecting the impacts of climate change on marine biodiversity. This article is part of the theme issue 'Detecting and attributing the causes of biodiversity change: needs, gaps and solutions'.


Assuntos
Biodiversidade , Oxigênio , Animais , Peixes , Mudança Climática , Canadá , Ecossistema
3.
Ecol Appl ; 29(4): e01890, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30929286

RESUMO

Marine protected areas (MPAs) are important conservation tools that can support the resilience of marine ecosystems. Many countries, including Canada, have committed to protecting at least 10% of their marine areas under the Convention on Biological Diversity's Aichi Target 11, which includes connectivity as a key aspect. Connectivity, the movement of individuals among habitats, can enhance population stability and resilience within and among MPAs. However, little is known about regional spatial patterns of marine ecological connectivity, particularly adult movement. We developed a method to assess and design MPA networks that maximize inferred connectivity within habitat types for adult movement when ecological data are limited. We used the Northern Shelf Bioregion in British Columbia, Canada, to explore two different approaches: (1) evaluating sites important for inferred regional connectivity (termed hotspots) and (2) assessing MPA network configurations based on their overlap with connectivity hotspots and interconnectedness between MPAs. To assess inferred connectivity via adult movement, we used two different threshold distances (15 and 50 km) to capture moderate home ranges, which are most appropriate to consider in MPA design. We applied graph theory to assess inferred connectivity within 16 habitat and depth categories (proxies for distinct ecological communities), and used novel multiplex network methodologies to perform an aggregated assessment of inferred connectivity. We evaluated inferred regional connectivity hotspots based on betweenness and eigenvector centrality metrics, finding that the existing MPA network overlapped a moderate proportion of these regional hotspots and identified key areas to be considered as candidate MPAs. Network density among existing MPAs was low within the individual habitat networks, as well as the multiplex. This work informs an ongoing MPA planning process, and approaches for incorporating connectivity into MPA design when data are limited, with lessons for other contexts.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Biodiversidade , Colúmbia Britânica , Peixes
4.
BMC Evol Biol ; 14(1): 34, 2014 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-24559294

RESUMO

BACKGROUND: The glaciation cycles that occurred throughout the Pleistocene in western North America caused frequent shifts in species' ranges with important implications for models of species divergence. For example, long periods of allopatry during species' range contractions allowed for the accumulation of differences between separated populations promoting lineage divergence. In contrast, range expansions during interglacial periods may have had homogenizing effects via increased gene flow following secondary contact. These range dynamics are particularly pronounced in the Sierra Nevada, California, given the complex topography and climatic history of the area, thus providing a natural laboratory to examine evolutionary processes that have led to the diversity patterns observed today. RESULTS: Here we examined the role of late Pleistocene climate fluctuations on the divergence of the Sierra Nevada endemic Alpine Chipmunk (Tamias alpinus) from its sister taxon, western populations of the Least Chipmunk (T. minimus) from the Great Basin. We used one mitochondrial gene (cytochrome b) and 14 microsatellite loci to examine the evolutionary relationship between these species. Mitochondrial sequence data revealed that T. alpinus and T. minimus populations share mitochondrial haplotypes with no overall geneaological separation, and that diversity at this locus is better explained by geography than by species' boundaries. In contrast, the microsatellite analysis showed that populations of the same species are more similar to each other than they are to members of the other species. Similarly, a morphological analysis of voucher specimens confirmed known differences in morphological characters between species providing no evidence of recent hybridization. Coalescent analysis of the divergence history indicated a late Pleistocene splitting time (~450 ka) and subsequent, though limited, gene flow between the two lineages. CONCLUSIONS: Our results suggest that the two species are distinct and there is no contemporary introgression along their geographic boundary. The divergence of T. alpinus during this time period provides additional evidence that Pleistocene glacial cycles played an important role in diversification of species in Sierra Nevada and North America in general.


Assuntos
Especiação Genética , Sciuridae/classificação , Sciuridae/genética , Animais , California , Clima , DNA Mitocondrial/genética , Fluxo Gênico , Geografia , Repetições de Microssatélites , Filogenia
5.
Biol Lett ; 8(1): 3-5, 2012 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-21733869

RESUMO

On 12-15 May 2011, a diverse group of students, researchers and practitioners from across Canada and around the world met in Banff, Alberta, to discuss the many facets of biodiversity science at the 6th Annual Meeting of the Canadian Society for Ecology and Evolution.


Assuntos
Biodiversidade , Evolução Biológica , Congressos como Assunto , Conservação dos Recursos Naturais/métodos , Ecologia/tendências , História Natural/tendências , Canadá , Conservação dos Recursos Naturais/tendências , História Natural/métodos
6.
Mol Ecol Resour ; 11(6): 1082-92, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21791033

RESUMO

Natural history collections are unparalleled repositories of geographical and temporal variation in faunal conditions. Molecular studies offer an opportunity to uncover much of this variation; however, genetic studies of historical museum specimens typically rely on extracting highly degraded and chemically modified DNA samples from skins, skulls or other dried samples. Despite this limitation, obtaining short fragments of DNA sequences using traditional PCR amplification of DNA has been the primary method for genetic study of historical specimens. Few laboratories have succeeded in obtaining genome-scale sequences from historical specimens and then only with considerable effort and cost. Here, we describe a low-cost approach using high-throughput next-generation sequencing to obtain reliable genome-scale sequence data from a traditionally preserved mammal skin and skull using a simple extraction protocol. We show that single-nucleotide polymorphisms (SNPs) from the genome sequences obtained independently from the skin and from the skull are highly repeatable compared to a reference genome.


Assuntos
DNA/isolamento & purificação , Genoma/genética , Cabelo/química , Museus , Ratos/genética , Manejo de Espécimes/métodos , Animais , Sequência de Bases , Análise por Conglomerados , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Modelos Genéticos , Dados de Sequência Molecular , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA
7.
Mol Ecol ; 13(12): 3735-49, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15548287

RESUMO

Introgressive hybridization is a common feature of many zones of contact between divergent lineages of fishes. This is particularly common when taxa that are normally allopatric come into artificial (human-induced) secondary contact. We examined 18 native populations of westslope cutthroat trout (Oncorhynchus clarki lewisi, WCT) to determine the extent of introgressive hybridization with introduced rainbow trout (O. mykiss, RBT) and the genetic structure of hybridizing populations in the upper Kootenay River, southeastern British Columbia, Canada. Using four diagnostic nuclear loci we calculated a hybrid index, inbreeding coefficient, FIS, and the linkage disquilibrium correlation coefficient, Rij, for each locality to determine the distribution of genotypes in each population. We also categorized the 142 hybrid individuals found across localities into four hybrid classes based on their genotypes. The majority of localities (11/18) showed a unimodal distribution of genotypes skewed towards genotypes of WCT. Two localities, however (lower Gold Creek and Lodgepole Creek) showed a flat to bimodal distribution and one site (lower Bull River) showed a unimodal distribution skewed towards RBT genotypes. The majority of hybrid individuals were classified genotypically as WCT backcrosses (59%) and post-F1 individuals (24%). We found a skewed ratio of pure WCT to pure RBT (17:1) and only four F1 hybrids (3%), suggesting that the spread of RBT alleles may be facilitated by hybrids straying to neighbouring populations. We also tested for the action of selection in one population using cohort analyses, but found little evidence of differential selection between pure WCT and hybrid individuals. Pooled across age classes there were significant differences in genotypic frequencies among loci suggesting differential introgression. There was no asymmetry to the hybridization between rainbow trout and westslope cutthroat trout because both species' mitochondrial DNA haplotypes were observed at similar frequencies in the hybrids. Our analyses suggest that hybrid swarms are likely to form in the upper Kootenay River drainage and that certain native WCT populations in British Columbia are at risk of local genomic extinction.


Assuntos
Genética Populacional , Hibridização Genética , Oncorhynchus/genética , Seleção Genética , Fatores Etários , Animais , Colúmbia Britânica , Conservação dos Recursos Naturais , DNA Mitocondrial/genética , Água Doce , Genótipo , Haplótipos/genética , Endogamia , Desequilíbrio de Ligação , Polimorfismo de Fragmento de Restrição , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...