Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cereb Cortex ; 25(3): 563-77, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24062318

RESUMO

In whisking rodents, object location is encoded at the receptor level by a combination of motor and sensory related signals. Recoding of the encoded signals can result in various forms of internal representations. Here, we examined the coding schemes occurring at the first forebrain level that receives inputs necessary for generating such internal representations--the thalamocortical network. Single units were recorded in 8 thalamic and cortical stations in artificially whisking anesthetized rats. Neuronal representations of object location generated across these stations and expressed in response latency and magnitude were classified based on graded and binary coding schemes. Both graded and binary coding schemes occurred across the entire thalamocortical network, with a general tendency of graded-to-binary transformation from thalamus to cortex. Overall, 63% of the neurons of the thalamocortical network coded object position in their firing. Thalamocortical responses exhibited a slow dynamics during which the amount of coded information increased across 4-5 whisking cycles and then stabilized. Taken together, the results indicate that the thalamocortical network contains dynamic mechanisms that can converge over time on multiple coding schemes of object location, schemes which essentially transform temporal coding to rate coding and gradual to labeled-line coding.


Assuntos
Potenciais de Ação , Modelos Neurológicos , Núcleos Posteriores do Tálamo/fisiologia , Córtex Somatossensorial/fisiologia , Percepção Espacial/fisiologia , Tato/fisiologia , Núcleos Ventrais do Tálamo/fisiologia , Animais , Masculino , Vias Neurais/fisiologia , Estimulação Física , Ratos , Ratos Wistar , Vibrissas/fisiologia
2.
Front Neuroanat ; 2: 4, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18958201

RESUMO

The ventral posteromedial thalamic nucleus (VPM) of the rat contains at least two major vibrissa-representing compartments: the dorsomedial (VPMdm), which belongs to the lemniscal afferent pathway, and the ventrolateral (VPMvl), which belongs to the extralemniscal afferent pathway. Although input-output projections and functional characteristics that distinguish these two compartments were recently clarified, a comprehensive structural analysis of these compartments and the border between them was lacking. This paper addresses structural and functional relationships between the VPMdm and VPMvl. We found that the size of the VPM is almost constant across individual rats. Next, we computed a canonical map of the VPM in the oblique plane, where structural borders are best visualized. Using the canonical map, and sequential slices cut in oblique and coronal planes, we determined the border between the VPMdm and VPMvl in the standard coronal plane, and verified it with in vivo extracellular recordings. The position of the border between these two vibrissal sub-nuclei changes along the rostrocaudal extent within the VPM due to the relative sizes of these sub-nuclei at any point. The border between the VPMdm and VPMvl, which was revealed by this technique, can now be included in atlases of the rat brain and should facilitate experimental correlation of tactile functions with thalamic regions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...