Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Microbiol Mol Biol Rev ; : e0020522, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958456

RESUMO

SUMMARYUnderstanding how commonly used chemical microbicides affect pathogenic microorganisms is important for formulation of microbicides. This review focuses on the mechanism(s) of action of chemical microbicides commonly used in infection prevention and control. Contrary to the typical site-specific mode of action of antibiotics, microbicides often act via multiple targets, causing rapid and irreversible damage to microbes. In the case of viruses, the envelope or protein capsid is usually the primary structural target, resulting in loss of envelope integrity or denaturation of proteins in the capsid, causing loss of the receptor-binding domain for host cell receptors, and/or breakdown of other viral proteins or nucleic acids. However, for certain virucidal microbicides, the nucleic acid may be a significant site of action. The region of primary damage to the protein or nucleic acid is site-specific and may vary with the virus type. Due to their greater complexity and metabolism, bacteria and fungi offer more targets. The rapid and irreversible damage to microbes may result from solubilization of lipid components and denaturation of enzymes involved in the transport of nutrients. Formulation of microbicidal actives that attack multiple sites on microbes, or control of the pH, addition of preservatives or potentiators, and so on, can increase the spectrum of action against pathogens and reduce both the concentrations and times needed to achieve microbicidal activity against the target pathogens.

2.
Sci Rep ; 13(1): 12983, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563252

RESUMO

The World Health Organization's R&D Blueprint list of priority diseases for 2022 includes Lassa fever, signifying the need for research and development in emergency contexts. This disease is caused by the arenavirus Lassa virus (LASV). Being an enveloped virus, LASV should be susceptible to a variety of microbicidal actives, although empirical data to support this expectation are needed. We evaluated the virucidal efficacy of sodium hypochlorite, ethanol, a formulated dual quaternary ammonium compound, an accelerated hydrogen peroxide formulation, and a p-chloro-m-xylenol formulation, per ASTM E1052-20, against LASV engineered to express green fluorescent protein (GFP). A 10-µL volume of virus in tripartite soil (bovine serum albumin, tryptone, and mucin) was combined with 50 µL of disinfectant in suspension for 0.5, 1, 5, or 10 min at 20-25 °C. Neutralized test mixtures were quantified by GFP expression to determine log10 reduction. Remaining material was passaged on Vero cells to confirm absence of residual infectious virus. Input virus titers of 6.6-8.0 log10 per assay were completely inactivated by each disinfectant within 1-5 min contact time. The rapid and substantial inactivation of LASV suggests the utility of these microbicides for mitigating spread of infectious virus during Lassa fever outbreaks.


Assuntos
Anti-Infecciosos , Desinfetantes , Febre Lassa , Animais , Chlorocebus aethiops , Humanos , Vírus Lassa , Febre Lassa/prevenção & controle , Células Vero , Anti-Infecciosos/metabolismo , Desinfetantes/farmacologia , Desinfetantes/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo
3.
J Appl Microbiol ; 132(2): 1489-1495, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34411388

RESUMO

AIM: The air indoors has profound health implications as it can expose us to pathogens, allergens and particulates either directly or via contaminated surfaces. There is, therefore, an upsurge in marketing of air decontamination technologies, but with no proper validation of their claims. We addressed the gap through the construction and use of a versatile room-sized (25 m3 ) chamber to study airborne pathogen survival and inactivation. METHODS AND RESULTS: Here, we report on the quantitative recovery and detection of an enveloped (Phi6) and a non-enveloped bacteriophage (MS2). The two phages, respectively, acted as surrogates for airborne human pathogenic enveloped (e.g., influenza, Ebola and coronavirus SARS-CoV-2) and non-enveloped (e.g., norovirus) viruses from indoor air deposited directly on the lawns of their respective host bacteria using a programmable slit-to-agar air sampler. Using this technique, two different devices based on HEPA filtration and UV light were tested for their ability to decontaminate indoor air. This safe, relatively simple and inexpensive procedure augments the use of phages as surrogates for the study of airborne human and animal pathogenic viruses. CONCLUSIONS: This simple, safe and relatively inexpensive method of direct recovery and quantitative detection of viable airborne phage particles can greatly enhance their applicattion as surrogates for the study of vertebrate virus survival in indoor air and assessment of technologies for their decontamination. SIGNIFICANCE AND IMPACT OF THE STUDY: The safe, economical and simple technique reported here can be applied widely to investigate the role of indoor air for virus survival and transmission and also to assess the potential of air decontaminating technologies.


Assuntos
Poluição do Ar em Ambientes Fechados , Bacteriófagos , COVID-19 , Vírus , Microbiologia do Ar , Poluição do Ar em Ambientes Fechados/análise , Animais , Humanos , SARS-CoV-2 , Vertebrados
4.
PeerJ ; 9: e12041, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34616601

RESUMO

Public Health Agencies worldwide (World Health Organization, United States Centers for Disease Prevention & Control, Chinese Center for Disease Control and Prevention, European Centre for Disease Prevention and Control, etc.) are recommending hand washing with soap and water for preventing the dissemination of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. In this review, we have discussed the mechanisms of decontamination by soap and water (involving both removal and inactivation), described the contribution of the various components of formulated soaps to performance as cleansers and to pathogen inactivation, explained why adherence to recommended contact times is critical, evaluated the possible contribution of water temperature to inactivation, discussed the advantages of antimicrobial soaps vs. basic soaps, discussed the differences between use of soap and water vs. alcohol-based hand sanitizers for hand decontamination, and evaluated the limitations and advantages of different methods of drying hands following washing. While the paper emphasizes data applicable to SARS-CoV-2, the topics discussed are germane to most emerging and re-emerging enveloped and non-enveloped viruses and many other pathogen types.

5.
Front Public Health ; 9: 657443, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34447735

RESUMO

The authors evaluated four disinfectant pre-impregnated wipes (DPW) for efficacy against Ebola virus Makona variant (EBOV) and vesicular stomatitis virus (VSV), Indiana serotype. Steel carriers were inoculated with the infectious virus and then were wiped with DPW in the Wiperator instrument per ASTM E2967-15. Following the use of J-Cloth impregnated with medium (negative control wipes) or the use of activated hydrogen peroxide (AHP)-, ethanol-, sodium hypochlorite (NaOCl)-, or single or dual quaternary ammonium compound (QAC)-based DPW, virus recovery from the carriers was assayed by titration assay and by two passages on Vero E6 cells in 6-well plates. The Wiperator also enabled the measurement of potential transfer of the virus from the inoculated carrier to a secondary carrier by the DPW or control wipes. The J-Cloth wipes wetted with medium alone (no microbicidal active) removed 1.9-3.5 log10 of virus from inoculated carriers but transferred ~4 log10 of the wiped virus to secondary carriers. DPW containing AHP, ethanol, NaOCl, or single or dual QAC as active microbicidal ingredients removed/inactivated ~6 log10 of the virus, with minimal EBOV or no VSV virus transfer to a secondary surface observed. In Ebola virus outbreaks, a DPW with demonstrated virucidal efficacy, used as directed, may help to mitigate the unintended spread of the infectious virus while performing surface cleaning.


Assuntos
Desinfetantes , Ebolavirus , Doença pelo Vírus Ebola , Estomatite Vesicular , Animais , Desinfetantes/farmacologia , Doença pelo Vírus Ebola/prevenção & controle , Aço Inoxidável
6.
Sci Rep ; 11(1): 5626, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33707476

RESUMO

Mitigating the risk of acquiring coronaviruses including SARS-CoV-2 requires awareness of the survival of virus on high-touch environmental surfaces (HITES) and skin, and frequent use of targeted microbicides with demonstrated efficacy. The data on stability of infectious SARS-CoV-2 on surfaces and in suspension have been put into perspective, as these inform the need for hygiene. We evaluated the efficacies of formulated microbicidal actives against alpha- and beta-coronaviruses, including SARS-CoV-2. The coronaviruses SARS-CoV, SARS-CoV-2, human coronavirus 229E, murine hepatitis virus-1, or MERS-CoV were deposited on prototypic HITES or spiked into liquid matrices along with organic soil loads. Alcohol-, quaternary ammonium compound-, hydrochloric acid-, organic acid-, p-chloro-m-xylenol-, and sodium hypochlorite-based microbicidal formulations were evaluated per ASTM International and EN standard methodologies. All evaluated formulated microbicides inactivated SARS-CoV-2 and other coronaviruses in suspension or on prototypic HITES. Virucidal efficacies (≥ 3 to ≥ 6 log10 reduction) were displayed within 30 s to 5 min. The virucidal efficacy of a variety of commercially available formulated microbicides against SARS-CoV-2 and other coronaviruses was confirmed. These microbicides should be useful for targeted surface and hand hygiene and disinfection of liquids, as part of infection prevention and control for SARS-CoV-2 and emerging mutational variants, and other emerging enveloped viruses.


Assuntos
Alphacoronavirus , Anti-Infecciosos , SARS-CoV-2 , Animais , Meia-Vida , Humanos , Testes de Sensibilidade Microbiana , Suínos
7.
Am J Infect Control ; 49(4): 464-468, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33347935

RESUMO

BACKGROUND: Schools represent high occupancy environments and well-documented high-risk locations for the transmission of respiratory viruses. The goal of this study was to report on the area density, occurrence, and type of respiratory viruses on desks in primary school classrooms. METHODS: Quantitative reverse transcription polymerase chain reaction (qPCR) techniques were employed to measure nucleic acid area densities from a broad range of human adenoviruses and rhinoviruses, as well as coronavirus OC43, influenza A, and norovirus GI. Every two weeks, virus monitoring was conducted on the desks of four primary school classrooms in Colorado, USA, during the 2019 respiratory virus season. RESULTS: DNA and RNA from respiratory viruses and norovirus were recovered from more than 20% of the desks sampled; occurrence patterns that indicate a greater than 60% probability of encountering any virus, if more than five desks were occupied in a day. Rhinoviruses and adenoviruses were the most commonly detected viruses as judged by the composite of occurrence and number of gene copies recovered. Desktop adenosine triphosphate monitoring did not predict the recovery of viral genomic materials on desks. School desks can be commonly contaminated with respiratory viruses. CONCLUSIONS: Genomic surveys of the identity, distribution and abundance of human viruses on "high-touch" surfaces, can help inform risk assessments, design cleaning interventions, and may be useful for infection surveillance.


Assuntos
Decoração de Interiores e Mobiliário , Vírus de RNA/isolamento & purificação , Infecções Respiratórias/virologia , Instituições Acadêmicas , Colorado/epidemiologia , DNA Viral/isolamento & purificação , Humanos , Vigilância da População , Vírus de RNA/genética , RNA Viral/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , Infecções Respiratórias/epidemiologia , Medição de Risco
8.
PeerJ ; 8: e9914, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33194365

RESUMO

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Wuhan City, China, late in December 2019 is an example of an emerging zoonotic virus that threatens public health and international travel and commerce. When such a virus emerges, there is often insufficient specific information available on mechanisms of virus dissemination from animal-to-human or from person-to-person, on the level or route of infection transmissibility or of viral release in body secretions/excretions, and on the survival of virus in aerosols or on surfaces. The effectiveness of available virucidal agents and hygiene practices as interventions for disrupting the spread of infection and the associated diseases may not be clear for the emerging virus. In the present review, we suggest that approaches for infection prevention and control (IPAC) for SARS-CoV-2 and future emerging/re-emerging viruses can be invoked based on pre-existing data on microbicidal and hygiene effectiveness for related and unrelated enveloped viruses.

9.
Sci Rep ; 10(1): 15247, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32943689

RESUMO

Microbicides play critical roles in infection prevention and control of Ebola virus by decontaminating high-touch environmental surfaces (HITES), interrupting the virus-HITES-hands nexus. We evaluated the efficacy of formulations containing different microbicidal actives for inactivating Ebola virus-Makona strain (EBOV/Mak) on stainless-steel carriers per ASTM E2197-11. Formulations of sodium hypochlorite (NaOCl) (0.05-1%), ethanol (70%), chloroxylenol (PCMX) (0.12-0.48% by weight) in hard water, and a ready-to-use disinfectant spray with 58% ethanol (EDS), were tested at contact times of 0, or 0.5 to 10 min at ambient temperature. EBOV/Mak was inactivated (> 6 log10) by 70% ethanol after contact times ≥ 2.5 min, by 0.5% and 1% NaOCl or EDS (> 4 log10) at contact times ≥ 5 min, and by 0.12-0.48% PCMX (> 4.2 log10) at contact times ≥ 5 min. Residual infectious virus in neutralized samples was assessed by passage on cells and evaluation for viral cytopathic effect. No infectious virus was detected in cells inoculated with EBOV/Mak exposed to NaOCl (0.5% or 1%), PCMX (0.12% to 0.48%), or EDS for ≥ 5 min. These results demonstrate ≥ 6 log10 inactivation of EBOV/Mak dried on prototypic surfaces by EDS or formulations of NaOCl (≥ 0.5%), PCMX (≥ 0.12%), or 70% ethanol at contact times ≥ 5 min.


Assuntos
Anti-Infecciosos/farmacologia , Ebolavirus/efeitos dos fármacos , Doença pelo Vírus Ebola/prevenção & controle , Inativação de Vírus/efeitos dos fármacos , Animais , Chlorocebus aethiops , Efeito Citopatogênico Viral/efeitos dos fármacos , Desinfetantes/farmacologia , Ebolavirus/patogenicidade , Microbiologia Ambiental , Etanol/farmacologia , Doença pelo Vírus Ebola/transmissão , Doença pelo Vírus Ebola/virologia , Humanos , Técnicas In Vitro , Porosidade , Hipoclorito de Sódio/farmacologia , Propriedades de Superfície , Células Vero , Xilenos/farmacologia
10.
Front Public Health ; 8: 183, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32582604

RESUMO

Disinfectant pre-soaked wipes (DPW) containing activated hydrogen peroxide (AHP) or quaternary ammonium compounds (QAC) were tested using ASTM E2967-15 to determine removal, transfer, and inactivation of Ebola virus Makona variant (EBOV/Mak) and vesicular stomatitis virus (VSV) from contaminated stainless steel prototypic environmental surfaces. The infectious virus-contaminated carriers were subjected to wiping in the Wiperator per the standard. Following the use of negative control (J-Cloth)-, AHP-, or QAC-based wipes, recovery of residual infectious virus was assayed. In the case of the J-Cloth wipes (negative control), although removal of virus from inoculated carriers was extensive i.e., ~99% (1.9-3.5 log10) transfer of virus by these wipes to a secondary surface amounted to ≤ 2% (~3.8 log10) of the initial virus load. In the case of each DPW, >6 log10 removal/inactivation of virus was observed, with limited (EBOV/Mak) or no (VSV) virus transfer observed. The efficacy of wipes for decontaminating high-touch environmental surfaces spiked with EBOV/Mak or VSV is discussed. In summary, removal of EBOV/Mak and VSV using wipes was extensive in this study. In the absence of a sufficient concentration and contact time of an appropriate microbicidal active in DPW (such as the AHP- and QAC-based DPW tested), transfer of a low, albeit significant (from an infectious unit/infectious dose perspective), quantity of infectious virus from the inoculated surface to a secondary surface was observed. In the case of Ebola virus, it is essential that a DPW with an appropriate microbicidal active, following the appropriate contact time, be used to prevent unintended transfer of infectious virus to a clean secondary surface (as observed in negative control /J-Cloth). Otherwise, there exists the possibility of dissemination of Ebola virus and the associated risk of transmission of Ebola virus disease.


Assuntos
Desinfetantes , Ebolavirus , Doença pelo Vírus Ebola , Estomatite Vesicular , Animais , Doença pelo Vírus Ebola/prevenção & controle , Vesiculovirus
12.
Am J Infect Control ; 48(11): 1387-1392, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32442651

RESUMO

BACKGROUND: The growing understanding of the importance of a healthy microbiome is challenging traditional thinking that resulted in the general acceptance of the Germ Theory of Disease. We propose a more encompassing Microbial Theory of Health that will have implications for the way that we address our relationship with microbes, including hygiene policy and community-based infection control practices. METHODS: This paper considers theories over the last 30 years that have impacted hygiene policy and consumer practice, from the Germ Theory of Disease and the Hygiene Hypothesis, to the Microbial Theory of Health, including the concept of Bidirectional Hygiene. Here we present a high-level review of the literature on pathogen transmission and the cycle of infection in the home and everyday settings. RESULTS: Targeted hygiene is an evidence-based hygiene policy that is employed to prevent transmission of pathogens and the transmission of infectious diseases through targeting only sites, surfaces, and practices that are considered high risk for pathogen transmission. Targeted hygiene also discourages the indiscriminate use of broad-spectrum microbicides for lower-risk activities and surfaces. CONCLUSIONS: The Microbial Theory of Health, including age-appropriate and health-appropriate hygiene practices for home and everyday life, should usher in a new era in which pathogen reduction can be accomplished without indiscriminate elimination of potentially beneficial microbes from the human and environmental microbiomes.


Assuntos
Teoria do Germe da Doença , Microbiota , Humanos , Higiene , Controle de Infecções
13.
Am J Infect Control ; 48(9): 1090-1099, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32311380

RESUMO

Antimicrobial resistance (AMR) continues to threaten global health. Although global and national AMR action plans are in place, infection prevention and control is primarily discussed in the context of health care facilities with home and everyday life settings barely addressed. As seen with the recent global SARS-CoV-2 pandemic, everyday hygiene measures can play an important role in containing the threat from infectious microorganisms. This position paper has been developed following a meeting of global experts in London, 2019. It presents evidence that home and community settings are important for infection transmission and also the acquisition and spread of AMR. It also demonstrates that the targeted hygiene approach offers a framework for maximizing protection against colonization and infections, thereby reducing antibiotic prescribing and minimizing selection pressure for the development of antibiotic resistance. If combined with the provision of clean water and sanitation, targeted hygiene can reduce the circulation of resistant bacteria in homes and communities, regardless of a country's Human Development Index (overall social and economic development). Achieving a reduction of AMR strains in health care settings requires a mirrored reduction in the community. The authors call upon national and international policy makers, health agencies, and health care professionals to further recognize the importance of targeted hygiene in the home and everyday life settings for preventing and controlling infection, in a unified quest to tackle AMR.


Assuntos
Antibacterianos/efeitos adversos , Farmacorresistência Bacteriana , Saúde Global/normas , Higiene/normas , Uso Excessivo de Medicamentos Prescritos/prevenção & controle , Infecções Bacterianas/tratamento farmacológico , Humanos , Saneamento/normas
14.
Antibiotics (Basel) ; 9(2)2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32024047

RESUMO

While intimate feminine hygiene products are widely used as part of daily cleansing routines, little is known about how these products impact the vulvovaginal area and its microbiome stability. This 4 week clinical study assessed tolerance of a novel gel wash containing lactic acid (pH 4.2) for external daily use when used on the external genital area and its effects on skin moisturization, vulvar skin pH, and the vulvar microbiome. After a 7 day pre-study conditioning period, 36 healthy females in three balanced age groups (18-29, 30-44, and 45-55 years) used the gel wash to cleanse their external genital area (mons pubis and vulva) and entire body at least once per day for 28 days. Skin tolerance of the gel wash was assessed by the gynecologist. Effects of the gel wash on vulvar skin microbiota were studied by performing bacterial 16S rRNA and fungal internal transcribed spacer (ITS) microbial richness and diversity analysis. Based on gynecologic assessment after 28 days of use, the gel wash showed acceptable tolerance, with no signs of increased dryness, redness, edema, itching, stinging, or burning. Use of the gel wash was associated with a significant increase in both short-term (single application) and longer-term (daily use for 28 days) skin moisturization. There was no significant change in vulvar skin pH over time with daily product use, and the gel wash did not significantly affect the natural vulvar microbiome species richness or diversity for bacteria or fungi. Results showed that this gel wash is a mild, moisturizing cleanser that maintains the natural pH and microbial diversity of vulvar skin. To our knowledge, this was the first study to assess the effect of an antimicrobial feminine gel wash on the natural pH and vulvar microbiome habitat of the skin using bacterial 16S rRNA and fungal ITS genetic sequencing techniques.

15.
Front Mol Biosci ; 7: 570914, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33392252

RESUMO

Hygiene and disinfection practices play an important role at preventing spread of viral infections in household, industrial and clinical settings. Although formulations based on >70% ethanol are virucidal, there is a currently a need to reformulate products with much lower alcohol concentrations. It has been reported that zinc can increase the virucidal activity of alcohols, although the reasons for such potentiation is unclear. One approach in developing virucidal formulations is to understand the mechanisms of action of active ingredients and formulation excipients. Here, we investigated the virucidal activity of alcohol (40% w/v) and zinc sulfate (0.1% w/v) combinations and their impact on a human adenovirus (HAdV) using, nucleic acid integrity assays, atomic force microscopy (AFM) and transmission electron microscopy (TEM). We observed no difference in virucidal activity (5 log10 reduction in 60 min) against between an ethanol only based formulation and a formulation combining ethanol and zinc salt. Furthermore, TEM imaging showed that the ethanol only formulation produced gross capsid damage, whilst zinc-based formulation or formulation combining both ethanol and zinc did not affect HAdV DNA. Unexpectedly, the addition of nickel salt (5 mM NiCl2) to the ethanol-zinc formulation contributed to a weakening of the capsid and alteration of the capsid mechanics exemplified by AFM imaging, together with structural capsid damage. The addition of zinc sulfate to the ethanol formulation did not add the formulation efficacy, but the unexpected mechanistic synergy between NiCl2 and the ethanol formulation opens an interesting perspective for the possible potentiation of an alcohol-based formulation. Furthermore, we show that AFM can be an important tool for understanding the mechanistic impact of virucidal formulation.

16.
Sci Rep ; 9(1): 6590, 2019 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-31036865

RESUMO

The efficacy of Dettol Antiseptic Liquid (DAL) for inactivating Ebola virus (Makona C07 variant) (EBOV/Mak) within an organic load in suspension was evaluated per ASTM E1052-11. Three DAL lots were evaluated at dilutions of 1:10, 1:20, and 1:40, with contact times of 0.5, 1, 5, and 10 min. Approximately 7 log10 tissue culture infectious dose50 (TCID50) of EBOV/Mak was exposed to DAL at ambient temperature. Each dilution tested reduced the infectious EBOV/Mak titer by ~5 log10 within one min. Detectable virus was still present after an 0.5-min exposure, but each DAL dilution caused >4 log10 reduction within this time. Detection of virus below the limit of detection of the TCID50 assay was assessed by inoculating flasks of Vero E6 cells with undiluted neutralized sample and evaluating the cultures for cytopathic effect after 14 days incubation. No infectious virus was detected with this non-quantitative method in samples subjected to DAL for 5 or 10 min, regardless of the dilution evaluated. The rapid and substantial inactivation of EBOV/Mak by DAL suggests that use of this hygiene product could help prevent the spread of Ebola virus disease during outbreaks.


Assuntos
Ebolavirus/efeitos dos fármacos , Doença pelo Vírus Ebola/prevenção & controle , Suspensões/farmacologia , Xilenos/farmacologia , Animais , Anti-Infecciosos Locais/farmacologia , Chlorocebus aethiops , Doença pelo Vírus Ebola/virologia , Humanos , Células Vero , Inativação de Vírus/efeitos dos fármacos
17.
JCI Insight ; 3(4)2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29467321

RESUMO

BACKGROUND: Constitutive activation of ERK1/2 occurs in various cancers, and its reactivation is a well-described resistance mechanism to MAPK inhibitors. ERK inhibitors may overcome the limitations of MAPK inhibitor blockade. The dual mechanism inhibitor SCH772984 has shown promising preclinical activity across various BRAFV600/RAS-mutant cancer cell lines and human cancer xenografts. METHODS: We have developed an orally bioavailable ERK inhibitor, MK-8353; conducted preclinical studies to demonstrate activity, pharmacodynamic endpoints, dosing, and schedule; completed a study in healthy volunteers (P07652); and subsequently performed a phase I clinical trial in patients with advanced solid tumors (MK-8353-001). In the P07652 study, MK-8353 was administered as a single dose in 10- to 400-mg dose cohorts, whereas in the MK-8353-001 study, MK-8353 was administered in 100- to 800-mg dose cohorts orally twice daily. Safety, tolerability, pharmacokinetics, pharmacodynamics, and antitumor activity were analyzed. RESULTS: MK-8353 exhibited comparable potency with SCH772984 across various preclinical cancer models. Forty-eight patients were enrolled in the P07652 study, and twenty-six patients were enrolled in the MK-8353-001 study. Adverse events included diarrhea (44%), fatigue (40%), nausea (32%), and rash (28%). Dose-limiting toxicity was observed in the 400-mg and 800-mg dose cohorts. Sufficient exposure to MK-8353 was noted that correlated with biological activity in preclinical data. Three of fifteen patients evaluable for treatment response in the MK-8353-001 study had partial response, all with BRAFV600-mutant melanomas. CONCLUSION: MK-8353 was well tolerated up to 400 mg twice daily and exhibited antitumor activity in patients with BRAFV600-mutant melanoma. However, antitumor activity was not particularly correlated with pharmacodynamic parameters. TRIAL REGISTRATION: ClinicalTrials.gov NCT01358331. FUNDING: Merck Sharp & Dohme Corp., a subsidiary of Merck & Co. Inc., and NIH (P01 CA168585 and R35 CA197633).


Assuntos
Indazóis/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Pirrolidinas/farmacologia , Triazóis/farmacologia , Administração Oral , Adulto , Animais , Disponibilidade Biológica , Linhagem Celular Tumoral , Diarreia/induzido quimicamente , Diarreia/epidemiologia , Cães , Relação Dose-Resposta a Droga , Toxidermias/epidemiologia , Toxidermias/etiologia , Avaliação Pré-Clínica de Medicamentos , Fadiga/induzido quimicamente , Fadiga/epidemiologia , Feminino , Humanos , Indazóis/uso terapêutico , Masculino , Dose Máxima Tolerável , Camundongos , Pessoa de Meia-Idade , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Náusea/induzido quimicamente , Náusea/epidemiologia , Estadiamento de Neoplasias , Neoplasias/genética , Neoplasias/patologia , Inibidores de Proteínas Quinases/uso terapêutico , Piridinas/uso terapêutico , Pirrolidinas/uso terapêutico , Ratos , Triazóis/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , Adulto Jovem
18.
Womens Health (Lond) ; 13(3): 58-67, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28934912

RESUMO

Women use various feminine hygiene products, often as part of their daily cleansing routine; however, there is a paucity of published medical literature related to the external vulva and how personal hygiene practices can affect it. This review article provides background information on the physiological changes that occur during women's lives and reviews the relevance of transient and resident microbiota as they relate to common vaginal and vulvar disorders. It also discusses the need for female intimate hygiene, common practices of feminine hygiene from a global perspective, and the potential benefits of using suitable external, topical feminine vulvar washes to minimize the risk of vulvovaginal disorders and to improve overall intimate health in women around the world. Supported by international guidelines, daily gentle cleansing of the vulva is an important aspect of feminine hygiene and overall intimate health. Women should be encouraged to choose a carefully formulated and clinically tested external wash that provides targeted antimicrobial and other health benefits without negatively impacting on the natural vulvovaginal microbiota.


Assuntos
Produtos de Higiene Feminina/estatística & dados numéricos , Higiene , Autocuidado/métodos , Vulvovaginite/prevenção & controle , Saúde da Mulher , Feminino , Educação em Saúde/métodos , Conhecimentos, Atitudes e Prática em Saúde , Humanos , Ducha Vaginal/métodos
19.
Appl Environ Microbiol ; 83(10)2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28389537

RESUMO

Family cars represent ∼74% of the yearly global output of motorized vehicles. With a life expectancy of ∼8 decades in many countries, the average person spends >100 min daily inside the confined and often shared space of the car, with exposure to a mix of potentially harmful microbes. Can commercial in-car microbial air decontamination devices mitigate the risk? Three such devices (designated devices 1 to 3) with HEPA filters were tested in the modified passenger cabin (3.25 m3) of a four-door sedan housed within a biosafety level 3 containment facility. Staphylococcus aureus (ATCC 6538) was suspended in a soil load to simulate the presence of body fluids and aerosolized into the car's cabin with a 6-jet Collison nebulizer. A muffin fan (80 mm by 80 mm, with an output of 0.17 m3/min) circulated the air inside. Plates (150 mm diameter) of Trypticase soy agar (TSA), placed inside a programmable slit-to-agar sampler, were held at 36 ± 1°C for 18 to 24 h and examined for CFU. The input dose of the test bacterium, its rate of biological decay, and the log10 reductions by the test devices were analyzed. The arbitrarily set performance criterion was the time in hours a device took for a 3-log10 reduction in the level of airborne challenge bacterium. On average, the level of S. aureus challenge in the air varied between 4.2 log10 CFU/m3 and 5.5 log10 CFU/m3, and its rate of biological decay was -0.0213 ± 0.0021 log10 CFU/m3/min. Devices 1 to 3 took 2.3, 1.5, and 9.7 h, respectively, to meet the performance criterion. While the experimental setup was tested using S. aureus as an archetypical airborne pathogen, it can be readily adapted to test other types of pathogens and technologies.IMPORTANCE This study was designed to test the survival of airborne pathogens in the confined and shared space of a family automobile as well as to assess claims of devices marketed for in-car air decontamination. The basic experimental setup and the test protocols reported are versatile enough for work with all major types of airborne human pathogens and for testing a wide variety of air decontamination technologies. This study could also lay the foundation for a standardized test protocol for use by device makers as well as regulators for the registration of such devices.


Assuntos
Microbiologia do Ar , Poluição do Ar em Ambientes Fechados/análise , Descontaminação/métodos , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/isolamento & purificação , Poluição do Ar , Automóveis , Descontaminação/instrumentação , Staphylococcus aureus/genética
20.
Am J Infect Control ; 44(9 Suppl): S109-20, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27590695

RESUMO

Indoor air can be an important vehicle for a variety of human pathogens. This review provides examples of airborne transmission of infectious agents from experimental and field studies and discusses how airborne pathogens can contaminate other parts of the environment to give rise to secondary vehicles leading air-surface-air nexus with possible transmission to susceptible hosts. The following groups of human pathogens are covered because of their known or potential airborne spread: vegetative bacteria (staphylococci and legionellae), fungi (Aspergillus, Penicillium, and Cladosporium spp and Stachybotrys chartarum), enteric viruses (noro- and rotaviruses), respiratory viruses (influenza and coronaviruses), mycobacteria (tuberculous and nontuberculous), and bacterial spore formers (Clostridium difficile and Bacillus anthracis). An overview of methods for experimentally generating and recovering airborne human pathogens is included, along with a discussion of factors that influence microbial survival in indoor air. Available guidelines from the U.S. Environmental Protection Agency and other global regulatory bodies for the study of airborne pathogens are critically reviewed with particular reference to microbial surrogates that are recommended. Recent developments in experimental facilities to contaminate indoor air with microbial aerosols are presented, along with emerging technologies to decontaminate indoor air under field-relevant conditions. Furthermore, the role that air decontamination may play in reducing the contamination of environmental surfaces and its combined impact on interrupting the risk of pathogen spread in both domestic and institutional settings is discussed.


Assuntos
Aerossóis , Microbiologia do Ar , Poluição do Ar em Ambientes Fechados , Transmissão de Doença Infecciosa/prevenção & controle , Controle de Infecções/métodos , Fômites , Guias como Assunto , Humanos , Modelos Teóricos , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...