Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(6)2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35335490

RESUMO

Polyurethane nanocomposites were prepared with a nanosized high surface area graphite (HSAG) functionalized on its edges with hydroxyl groups as a building block. Edge functionalization of HSAG was obtained through reaction with KOH. The addition of OH groups was demonstrated by means of infrared (FTIR) and thermogravimetric analysis (TGA), and the Boehm titration allowed estimation of a level of about 5.0 mmolOH/gHSAG. Results from wide-angle X-ray diffraction (WAXD) and Raman spectroscopy suggested that functionalization of the graphene layers occurred on the edges. The evaluation of the Hansen solubility parameters of G-OH revealed a substantial increase of δP and δH parameters with respect to HSAG. In line with these findings, homogeneous and stable dispersions of G-OH in a polyol were obtained. PU were prepared by mixing a dispersion of G-OH in cis-1,4-butenediol with hexamethylene diisocyanate. A model reaction between catechol, 1,4-butanediol, and hexamethylene diisocyanate demonstrated the reactivity of hydroxylated aromatic rings with isocyanate groups. PU-based G-OH, characterized with WAXD and differential scanning calorimetry (DSC), revealed lower Tg, higher Tc, Tm, and crystallinity than PU without G-OH. These results could be due to the higher flexibility of the polymer chains, likely a consequence of the dilution of the urethane bonds by the carbon substrate. Hence, G-OH allowed the preparation of PU with a larger temperature range between Tg and Tm, with potential positive impact on material applications. The model reaction between butylisocyanate and 1-butanol revealed that HSAG and G-OH promote efficient formation of the urethane bond, even in the absence of a catalyst. The effect of high surface area carbon on the nucleophilic oxygen attack to the isocyanate group can be hypothesized. The results here reported lead us to comment that a reactive nanosized sp2 carbon allotrope, such as G-OH, can be used as a multifunctional building block of PU. Indeed, G-OH is a comonomer of PU, a promoter of the polymerization reaction, and can definitely act as reinforcing filler by tuning its amount in the final nanocomposite leading to highly versatile materials. The larger temperature range between Tg and Tm, together with the presence of G-OH acting as a reinforcing agent, could allow the production of piezoresistive sensing, shape-memory PU with good mechanical features.

2.
Nanomaterials (Basel) ; 10(6)2020 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-32486371

RESUMO

A recently reported functionalization of single and multi-walled carbon nanotubes, based on a cycloaddition reaction between carbon nanotubes and a pyrrole derived compound, was exploited for the formation of a doxorubicin (DOX) stacked drug delivery system. The obtained supramolecular nano-conveyors were characterized by wide-angle X-ray diffraction (WAXD), thermogravimetric analysis (TGA), high-resolution transmission electron microscopy (HR-TEM), and Fourier transform infrared (FT-IR) spectroscopy. The supramolecular interactions were studied by molecular dynamics simulations and by monitoring the emission and the absorption spectra of DOX. Biological studies revealed that two of the synthesized nano-vectors are effectively able to get the drug into the studied cell lines and also to enhance the cell mortality of DOX at a much lower effective dose. This work reports the facile functionalization of carbon nanotubes exploiting the "pyrrole methodology" for the development of novel technological carbon-based drug delivery systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...