Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Cell Sci ; 125(Pt 22): 5259-68, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23377657

RESUMO

Cellular stress triggers a fascinating decision-making process in cells; they can either attempt to survive until the stress is resolved through the activation of cytoprotective pathways, such as autophagy, or can commit suicide by apoptosis in order to prevent further damage to surrounding healthy cells. Although autophagy and apoptosis constitute distinct cellular processes with often opposing outcomes, their signalling pathways are extensively interconnected through various mechanisms of crosstalk. The physiological relevance of the autophagy-apoptosis crosstalk is not well understood, but it is presumed to facilitate a controlled and well-balanced cellular response to a given stress signal. In this Commentary, we explore the various mechanisms by which autophagy and apoptosis regulate each other, and define general paradigms of crosstalk on the basis of mechanistic features. One paradigm relates to physical and functional interactions between pairs of specific apoptotic and autophagic proteins. In a second mechanistic paradigm, the apoptosis or autophagy processes (as opposed to individual proteins) regulate each other through induced caspase and autolysosomal activity, respectively. In a third paradigm unique to autophagy, caspases are recruited and activated on autophagosomal membranes. These mechanistic paradigms are discernible experimentally, and can therefore be used as a practical guide for the interpretation of experimental data.


Assuntos
Apoptose , Autofagia , Animais , Doença , Humanos , Modelos Biológicos
2.
Mol Cell ; 44(5): 698-709, 2011 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-22152474

RESUMO

Autophagy and apoptosis constitute important determinants of cell fate and engage in a complex interplay in both physiological and pathological settings. The molecular basis of this crosstalk is poorly understood and relies, in part, on "dual-function" proteins that operate in both processes. Here, we identify the essential autophagy protein Atg12 as a positive mediator of mitochondrial apoptosis and show that Atg12 directly regulates the apoptotic pathway by binding and inactivating prosurvival Bcl-2 family members, including Bcl-2 and Mcl-1. The binding occurs independently of Atg5 or Atg3 and requires a unique BH3-like motif in Atg12, characterized by interaction studies and computational docking. In apoptotic cells, knockdown of Atg12 inhibited Bax activation and cytochrome c release, while ectopic expression of Atg12 antagonized the antiapoptotic activity of Mcl-1. The interaction between Atg12 and Bcl-2 family members may thus constitute an important point of convergence between autophagy and apoptosis in response to specific signals.


Assuntos
Apoptose , Autofagia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Proteína 12 Relacionada à Autofagia , Células HEK293 , Humanos , Proteína de Sequência 1 de Leucemia de Células Mieloides , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética
3.
Sci Signal ; 4(196): pl1, 2011 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-22028466

RESUMO

Genome-scale screening studies are gradually accumulating a wealth of data on the putative involvement of hundreds of genes in various cellular responses or functions. A fundamental challenge is to chart the molecular pathways that underlie these systems. ANAT is an interactive software tool, implemented as a Cytoscape plug-in, for elucidating functional networks of proteins. It encompasses a number of network inference algorithms and provides access to networks of physical associations in several organisms. In contrast to existing software tools, ANAT can be used to infer subnetworks that connect hundreds of proteins to each other or to a given set of "anchor" proteins, a fundamental step in reconstructing cellular subnetworks. The interactive component of ANAT provides an array of tools for evaluating and exploring the resulting subnetwork models and for iteratively refining them. We demonstrate the utility of ANAT by studying the crosstalk between the autophagic and apoptotic cell death modules in humans, using a network of physical interactions. Relative to published software tools, ANAT is more accurate and provides more features for comprehensive network analysis. The latest version of the software is available at http://www.cs.tau.ac.il/~bnet/ANAT_SI.


Assuntos
Algoritmos , Mapeamento de Interação de Proteínas/métodos , Proteínas/metabolismo , Transdução de Sinais/fisiologia , Software , Animais , Apoptose/genética , Apoptose/fisiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Autofagia/genética , Autofagia/fisiologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Genoma/genética , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Humanos , Internet , Camundongos , Modelos Biológicos , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Proteínas/genética , Ratos , Reprodutibilidade dos Testes , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/genética
4.
Trends Biochem Sci ; 35(10): 556-64, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20537543

RESUMO

Systems biology, a combined computational and experimental approach to analyzing complex biological systems, has recently been applied to understanding the pathways that regulate programmed cell death. This approach has become especially crucial because recent advances have resulted in an expanded view of the network, to include not just a single death module (apoptosis) but multiple death programs, including programmed necrosis and autophagic cell death. Current research directions in the systems biology field range from quantitative analysis of subprocesses of individual death pathways to the study of interconnectivity among the various death modules of the larger network. These initial studies have provided great advances in our understanding of programmed cell death and have important clinical implications for drug target research.


Assuntos
Apoptose , Biologia de Sistemas/métodos , Animais , Humanos , Modelos Biológicos , Interferência de RNA , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA