Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 36(1): 109318, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34233185

RESUMO

The immunological synapse is a complex structure that decodes stimulatory signals into adapted lymphocyte responses. It is a unique window to monitor lymphocyte activity because of development of systematic quantitative approaches. Here we demonstrate the applicability of high-content imaging to human T and natural killer (NK) cells and develop a pipeline for unbiased analysis of high-definition morphological profiles. Our approach reveals how distinct facets of actin cytoskeleton remodeling shape immunological synapse architecture and affect lytic granule positioning. Morphological profiling of CD8+ T cells from immunodeficient individuals allows discrimination of the roles of the ARP2/3 subunit ARPC1B and the ARP2/3 activator Wiskott-Aldrich syndrome protein (WASP) in immunological synapse assembly. Single-cell analysis further identifies uncoupling of lytic granules and F-actin radial distribution in ARPC1B-deficient lymphocytes. Our study provides a foundation for development of morphological profiling as a scalable approach to monitor primary lymphocyte responsiveness and to identify complex aspects of lymphocyte micro-architecture.


Assuntos
Forma Celular , Imageamento Tridimensional , Células Matadoras Naturais/citologia , Linfócitos T/citologia , Complexo 2-3 de Proteínas Relacionadas à Actina/deficiência , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Adolescente , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linhagem Celular , Forma Celular/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Exocitose/efeitos dos fármacos , Humanos , Sinapses Imunológicas/efeitos dos fármacos , Sinapses Imunológicas/metabolismo , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/metabolismo , Masculino , Compostos Organosselênicos/farmacologia , Compostos de Organossilício/farmacologia , Análise de Célula Única , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Tionas/farmacologia , Uracila/análogos & derivados , Uracila/farmacologia , Proteína da Síndrome de Wiskott-Aldrich/deficiência , Proteína da Síndrome de Wiskott-Aldrich/metabolismo
3.
Stem Cell Res ; 48: 101980, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32920507

RESUMO

Intestinal organoids are self-organized 3-dimensional (3D) structures formed by a single layer of polarized epithelial cells. This innovative in vitro model is highly relevant to study physiology of the intestinal epithelium and its role in nutrition and barrier function. However, this model has never been developed in rabbits, while it would have potential applications for biomedical and veterinary research. Here, we cultured rabbit caecum organoids with either pharmacological inhibitors (2Ki medium) or L-WRN cells conditioned medium (L-WRN CM) to reconstitute the intestinal stem cell niche in vitro. Large spherical organoids were obtained with the 2Ki medium and this morphology was associated with a high level of proliferation and stem cells markers gene expression. In contrast, organoids cultured with L-WRN CM had a smaller diameter; a greater cell height and part of them were not spherical. When the L-WRN CM was used at low concentration (5%) for two days, the gene expression of stem cells and proliferation markers were very low, while absorptive and secretory cells markers and antimicrobial peptides were elevated. Epithelial cells within organoids were polarized in 3D cultures with 2Ki medium or L-WRN CM (apical side towards the lumen). We cultured dissociated organoid cells in 2D monolayers, which allowed accessibility to the apical compartment. Under these conditions, actin stress fibers were observed with the 2Ki medium, while perijonctionnal localization of actin was observed with the L-WRN CM suggesting, in 2D cultures as well, a higher differentiation level in the presence of L-WRN CM. In conclusion, rabbit caecum organoids cultured with the 2Ki medium were more proliferative and less differentiated than organoids cultured with L-WRN CM. We propose that organoids cultured with the 2Ki medium could be used to rapidly generate in vitro a large number of rabbit intestinal epithelial stem cells while organoids cultured with the L-WRN CM used at low concentration represent a suitable model to study differentiated rabbit epithelium.


Assuntos
Organoides , Nicho de Células-Tronco , Animais , Ceco , Meios de Cultivo Condicionados/farmacologia , Mucosa Intestinal , Intestinos , Coelhos
4.
Front Immunol ; 8: 498, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28507548

RESUMO

Retention of iron in tissue macrophages via upregulation of hepcidin (HAMP) and downregulation of the iron exporter ferroportin (FPN) is thought to participate in the establishment of anemia of inflammation after infection. However, an upregulation of FPN has been proposed to limit macrophages iron access to intracellular pathogens. Therefore, we studied the iron homeostasis and in particular the regulation of FPN after infection with Salmonella enterica serovar Typhimurium in mice presenting tissue macrophages with high iron (AcB61), basal iron (A/J and wild-type mice), or low iron (Hamp knock out, Hamp-/-) levels. The presence of iron in AcB61 macrophages due to extravascular hemolysis and strong erythrophagocytosis activity favored the proliferation of Salmonella in the spleen and liver with a concomitant decrease of FPN protein expression. Despite systemic iron overload, no or slight increase in Salmonella burden was observed in Hamp-/- mice compared to controls. Importantly, FPN expression at both mRNA and protein levels was strongly decreased during Salmonella infection in Hamp-/- mice. The repression of Fpn mRNA was also observed in Salmonella-infected cultured macrophages. In addition, the downregulation of FPN was associated with decreased iron stores in both the liver and spleen in infected mice. Our findings show that during Salmonella infection, FPN is repressed through an iron and hepcidin-independent mechanism. Such regulation likely provides the cellular iron indispensable for the growth of Salmonella inside the macrophages.

5.
Blood ; 127(19): 2327-36, 2016 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-26755707

RESUMO

Hepcidin, the main regulator of iron homeostasis, is repressed when erythropoiesis is acutely stimulated by erythropoietin (EPO) to favor iron supply to maturing erythroblasts. Erythroferrone (ERFE) has been identified as the erythroid regulator that inhibits hepcidin in stress erythropoiesis. A powerful hepcidin inhibitor is the serine protease matriptase-2, encoded by TMPRSS6, whose mutations cause iron refractory iron deficiency anemia. Because this condition has inappropriately elevated hepcidin in the presence of high EPO levels, a role is suggested for matriptase-2 in EPO-mediated hepcidin repression. To investigate the relationship between EPO/ERFE and matriptase-2, we show that EPO injection induces Erfe messenger RNA expression but does not suppress hepcidin in Tmprss6 knockout (KO) mice. Similarly, wild-type (WT) animals, in which the bone morphogenetic protein-mothers against decapentaplegic homolog (Bmp-Smad) pathway is upregulated by iron treatment, fail to suppress hepcidin in response to EPO. To further investigate whether the high level of Bmp-Smad signaling of Tmprss6 KO mice counteracts hepcidin suppression by EPO, we generated double KO Bmp6-Tmprss6 KO mice. Despite having Bmp-Smad signaling and hepcidin levels that are similar to WT mice under basal conditions, double KO mice do not suppress hepcidin in response to EPO. However, pharmacologic downstream inhibition of the Bmp-Smad pathway by dorsomorphin, which targets the BMP receptors, improves the hepcidin responsiveness to EPO in Tmprss6 KO mice. We concluded that the function of matriptase-2 is dominant over that of ERFE and is essential in facilitating hepcidin suppression by attenuating the BMP-SMAD signaling.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Eritropoetina/farmacologia , Hepcidinas/metabolismo , Fígado/metabolismo , Proteínas de Membrana/metabolismo , Serina Endopeptidases/metabolismo , Transdução de Sinais/fisiologia , Proteínas Smad/metabolismo , Animais , Proteínas Morfogenéticas Ósseas/genética , Hepcidinas/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Serina Endopeptidases/genética , Proteínas Smad/genética
6.
Nat Commun ; 5: 3477, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24637612

RESUMO

Exosomes are small vesicles that are secreted by cells and act as mediators of cell to cell communication. Because of their potential therapeutic significance, important efforts are being made towards characterizing exosomal contents. However, little is known about the mechanisms that govern exosome biogenesis. We have recently shown that the exosomal protein syntenin supports exosome production. Here we identify the small GTPase ADP ribosylation factor 6 (ARF6) and its effector phospholipase D2 (PLD2) as regulators of syntenin exosomes. ARF6 and PLD2 affect exosomes by controlling the budding of intraluminal vesicles (ILVs) into multivesicular bodies (MVBs). ARF6 also controls epidermal growth factor receptor degradation, suggesting a role in degradative MVBs. Yet ARF6 does not affect HIV-1 budding, excluding general effects on Endosomal Sorting Complexes Required for Transport. Our study highlights a novel pathway controlling ILV budding and exosome biogenesis and identifies an unexpected role for ARF6 in late endosomal trafficking.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Exossomos/metabolismo , Corpos Multivesiculares/metabolismo , Fosfolipase D/metabolismo , Sinteninas/metabolismo , Fator 6 de Ribosilação do ADP , Fatores de Ribosilação do ADP/genética , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Receptores ErbB/metabolismo , Exossomos/enzimologia , Exossomos/genética , Infecções por HIV/genética , Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1/fisiologia , Humanos , Corpos Multivesiculares/enzimologia , Corpos Multivesiculares/genética , Fosfolipase D/genética , Transporte Proteico , Sinteninas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...