Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 349: 123904, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38565392

RESUMO

The indiscriminate and, very often, incorrect use of pesticides in Brazil, as well as in other countries, results in severe levels of environmental pollution and intoxication of human life. Herein, we studied plasma membrane models (monolayer and bilayer) of the phospholipid Dioleoyl-sn-glycerol-3-phosphocholine (DOPC) using Langmuir films, and large (LUVs) and giant (GUVs) unilamellar vesicles, to determine the effect of the pesticides chlorantraniliprole (CLTP), isoxaflutole (ISF), and simazine (SMZ), used in sugarcane. CLTP affects the lipid organization of the bioinspired models of DOPC π-A isotherms, while ISF and SMZ pesticides significantly affect the LUVs and GUVs. Furthermore, the in vivo study of the gill tissue in fish in the presence of pesticides (2.0 × 10-10 mol/L for CLTP, 8.3 × 10-9 mol/L for ISF, and SMZ at 9.9 × 10-9 mol/L) was performed using optical and fluorescence images. This investigation was motivated by the gill lipid membranes, which are vital for regulating transporter activity through transmembrane proteins, crucial for maintaining ionic balance in fish gills. In this way, the presence of phospholipids in gills offers a model for understanding their effects on fish health. Histological results show that exposure to CLTP, ISF, and SMZ may interfere with vital gill functions, leading to respiratory disorders and osmoregulation dysfunction. The results indicate that exposure to pesticides caused severe morphological alterations in fish, which could be correlated with their impact on the bioinspired membrane models. Moreover, the effect does not depend on the exposure period (24h and 96h), showing that animals exposed to pesticides for a short period suffer irreparable damage to gill tissue. In summary, we can conclude that the harm caused by pesticides, both in membrane models and in fish gills, occurs due to contamination of the aquatic system with pesticides. Therefore, water quality is vital for the preservation of ecosystems.


Assuntos
Brânquias , Praguicidas , Fosfolipídeos , Tilápia , ortoaminobenzoatos , Animais , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Fosfolipídeos/metabolismo , Praguicidas/toxicidade , Tilápia/metabolismo , ortoaminobenzoatos/toxicidade , Poluentes Químicos da Água/toxicidade , Membrana Celular/efeitos dos fármacos , Brasil
2.
J Hazard Mater ; 458: 131943, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37390683

RESUMO

Pesticide misuse has well-documented detrimental effects on ecosystems, with Nile tilapia (Oreochromis niloticus) being particularly vulnerable. The current study focuses on the impact of widely used sugarcane crop pesticides, Imazapic (IMZ) and Methyl Parathion (MP), on tilapia gill tissues and their lipid membranes. This investigation was motivated by the specific role of the lipid membrane in transport regulation. Bioinspired cell membrane models, including Langmuir monolayers and liposomes (LUVs and GUVs), were utilized to explore the interaction of IMZ and MP. The results revealed electrostatic interactions between IMZ and MP and the polar head groups of lipids, inducing morphological alterations in the lipid bilayer. Tilapia gill tissue exposed to the pesticides exhibited hypertrophic increases in primary and secondary lamellae, total lamellar fusion, vasodilation, and lifting of the secondary lamellar epithelium. These alterations can lead to compromised oxygen absorption by fish and subsequent mortality. This study not only highlights the harmful effects of the pesticides IMZ and MP, but also emphasizes the crucial role of water quality in ecosystem well-being, even at minimal pesticide concentrations. Understanding these impacts can better inform management practices to safeguard aquatic organisms and preserve ecosystem health in pesticide-affected environments.


Assuntos
Ciclídeos , Metil Paration , Praguicidas , Tilápia , Poluentes Químicos da Água , Animais , Tilápia/metabolismo , Praguicidas/metabolismo , Metil Paration/metabolismo , Ecossistema , Lipídeos , Brânquias/metabolismo , Poluentes Químicos da Água/metabolismo
3.
Appl Spectrosc ; 74(7): 751-757, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32031016

RESUMO

In the following work, the vibrational spectroscopic characteristics of artepillin C are reported by means of Fourier transform infrared (FT-IR) and Raman spectroscopies, surface-enhanced Raman scattering (SERS), and coherent anti-Stokes Raman scattering (CARS) microscopy. Artepillin C is an interesting compound due to its pharmacological properties, including antitumor activity. It is found as the major component of Brazilian green propolis, a resinous mixture produced by bees to protect their hives against intruders. Vibrational spectroscopic techniques have shown a strong peak at 1599 cm-1, assigned to C=C stretching vibrations from the aromatic ring of artepillin C. From these data, direct visualization of artepillin C could be assessed by means of CARS microscopy, showing differences in the film hydration obtained for its neutral and deprotonated states. Raman-based methods show potential to visualize the uptake and action of artepillin C in biological systems, triggering its interaction with biological systems that are needed to understand its mechanism of action.


Assuntos
Fenilpropionatos/química , Conformação Molecular , Própole/química , Análise Espectral Raman
4.
Sensors (Basel) ; 18(11)2018 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-30413000

RESUMO

The recent development of silver nanostars (Ag-NSs) is promising for improved surface-enhanced sensing and spectroscopy, which may be further exploited if the mechanisms behind the excitation of localized surface plasmon resonances (LSPRs) are identified. Here, we show that LSPRs in Ag-NSs can be obtained with finite-difference time-domain (FDTD) calculations by considering the nanostars as combination of crossed nanorods (Ag-NRs). In particular, we demonstrate that an apparent tail at large wavelengths ( λ ≳ 700 nm) observed in the extinction spectra of Ag-NSs is due to a strong dipolar plasmon resonance, with no need to invoke heterogeneity (different number of arms) effects as is normally done in the literature. Our description also indicates a way to tune the strongest LSPR at desired wavelengths, which is useful for sensing applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...