Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-345470

RESUMO

The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has developed into an unprecedented global pandemic. Nucleoside analogues, such as Remdesivir and Favipiravir, can serve as the first-line broad-spectrum antiviral drugs against the newly emerging viral diseases. Recent clinical trials of these two drugs for SARS-CoV-2 treatment revealed antiviral efficacies as well as side effects with different extents1-4. As a pyrazine derivative, Favipiravir could be incorporated into the viral RNA products by mimicking both adenine and guanine nucleotides, which may further lead to mutations in progeny RNA copies due to the non-conserved base-pairing capacity5. Here, we determined the cryo-EM structure of Favipiravir bound to the replicating polymerase complex of SARS-CoV-2 in the pre-catalytic state. This structure provides a missing snapshot for visualizing the catalysis dynamics of coronavirus polymerase, and reveals an unexpected base-pairing pattern between Favipiravir and pyrimidine residues which may explain its capacity for mimicking both adenine and guanine nucleotides. These findings shed lights on the mechanism of coronavirus polymerase catalysis and provide a rational basis for developing antiviral drugs to combat the SARS-CoV-2 pandemic.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-057265

RESUMO

The ongoing global pandemic of coronavirus disease 2019 (COVID-19) has caused huge number of human deaths. Currently, there are no specific drugs or vaccines available for this virus. The viral polymerase is a promising antiviral target. However, the structure of COVID-19 virus polymerase is yet unknown. Here, we describe the near-atomic resolution structure of its core polymerase complex, consisting of nsp12 catalytic subunit and nsp7-nsp8 cofactors. This structure highly resembles the counterpart of SARS-CoV with conserved motifs for all viral RNA-dependent RNA polymerases, and suggests the mechanism for activation by cofactors. Biochemical studies revealed reduced activity of the core polymerase complex and lower thermostability of individual subunits of COVID-19 virus as compared to that of SARS-CoV. These findings provide important insights into RNA synthesis by coronavirus polymerase and indicate a well adaptation of COVID-19 virus towards humans with relatively lower body temperatures than the natural bat hosts.

3.
Protein & Cell ; (12): 888-898, 2016.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-757381

RESUMO

Ebola virus (EBOV) harbors an RNA genome encapsidated by nucleoprotein (NP) along with other viral proteins to form a nucleocapsid complex. Previous Cryo-eletron tomography and biochemical studies have shown the helical structure of EBOV nucleocapsid at nanometer resolution and the first 450 amino-acid of NP (NPΔ451-739) alone is capable of forming a helical nucleocapsid-like complex (NLC). However, the structural basis for NP-NP interaction and the dynamic procedure of the nucleocapsid assembly is yet poorly understood. In this work, we, by using an E. coli expression system, captured a series of images of NPΔ451-739 conformers at different stages of NLC assembly by negative-stain electron microscopy, which allowed us to picture the dynamic procedure of EBOV nucleocapsid assembly. Along with further biochemical studies, we showed the assembly of NLC is salt-sensitive, and also established an indispensible role of RNA in this process. We propose the diverse modes of NLC elongation might be the key determinants shaping the plasticity of EBOV virions. Our findings provide a new model for characterizing the self-oligomerization of viral nucleoproteins and studying the dynamic assembly process of viral nucleocapsid in vitro.


Assuntos
Ebolavirus , Química , Genética , Metabolismo , Escherichia coli , Genética , Metabolismo , Expressão Gênica , Nucleocapsídeo , Química , Genética , Metabolismo , RNA Viral , Química , Genética , Metabolismo , Proteínas Recombinantes , Química , Genética , Metabolismo , Montagem de Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...