Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Clin Invest ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888968

RESUMO

Tolerance of mouse kidney allografts arises in grafts that develop regulatory Tertiary Lymphoid Organs (rTLOs). scRNAseq data and adoptive transfer of alloreactive T cells post-transplant showed that cytotoxic CD8+ T cells are reprogrammed within the accepted graft to an exhausted/regulatory-like phenotype mediated by IFN-γ. Establishment of rTLOs was required since adoptive transfer of alloreactive T cells prior to transplantation results in kidney allograft rejection. Despite intragraft CD8+ cells with a regulatory phenotype, they were not essential for the induction and maintenance of kidney allograft tolerance since renal allotransplantation into CD8 KO recipients resulted in acceptance and not rejection. Analysis of scRNAseq data from allograft kidneys and malignant tumors identified similar regulatory-like cell types within the T cell clusters and trajectory analysis showed that cytotoxic CD8+ T cells are reprogrammed into an exhausted/regulatory-like phenotype intratumorally. Induction of cytotoxic CD8+ T cell dysfunction of infiltrating cells appears to be a beneficial mechanistic pathway that protects the kidney allotransplant from rejection through a process we call "defensive tolerance." This pathway has implications for our understanding of allotransplant tolerance and tumor resistance to host immunity.

2.
Nat Cancer ; 5(3): 481-499, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38233483

RESUMO

Activating mutations in GNAQ/GNA11 occur in over 90% of uveal melanomas (UMs), the most lethal melanoma subtype; however, targeting these oncogenes has proven challenging and inhibiting their downstream effectors show limited clinical efficacy. Here, we performed genome-scale CRISPR screens along with computational analyses of cancer dependency and gene expression datasets to identify the inositol-metabolizing phosphatase INPP5A as a selective dependency in GNAQ/11-mutant UM cells in vitro and in vivo. Mutant cells intrinsically produce high levels of the second messenger inositol 1,4,5 trisphosphate (IP3) that accumulate upon suppression of INPP5A, resulting in hyperactivation of IP3-receptor signaling, increased cytosolic calcium and p53-dependent apoptosis. Finally, we show that GNAQ/11-mutant UM cells and patients' tumors exhibit elevated levels of IP4, a biomarker of enhanced IP3 production; these high levels are abolished by GNAQ/11 inhibition and correlate with sensitivity to INPP5A depletion. Our findings uncover INPP5A as a synthetic lethal vulnerability and a potential therapeutic target for GNAQ/11-mutant-driven cancers.


Assuntos
Melanoma , Humanos , Melanoma/tratamento farmacológico , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/uso terapêutico , Mutação , Transdução de Sinais , Inositol Polifosfato 5-Fosfatases/genética
3.
Cancer Res ; 83(21): 3611-3623, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37603596

RESUMO

For a majority of patients with non-small cell lung cancer with EGFR mutations, treatment with EGFR inhibitors (EGFRi) induces a clinical response. Despite this initial reduction in tumor size, residual disease persists that leads to disease relapse. Elucidating the preexisting biological differences between sensitive cells and surviving drug-tolerant persister cells and deciphering how drug-tolerant cells evolve in response to treatment could help identify strategies to improve the efficacy of EGFRi. In this study, we tracked the origins and clonal evolution of drug-tolerant cells at a high resolution by using an expressed barcoding system coupled with single-cell RNA sequencing. This platform enabled longitudinal profiling of gene expression and drug sensitivity in response to EGFRi across a large number of clones. Drug-tolerant cells had higher expression of key survival pathways such as YAP and EMT at baseline and could also differentially adapt their gene expression following EGFRi treatment compared with sensitive cells. In addition, drug combinations targeting common downstream components (MAPK) or orthogonal factors (chemotherapy) showed greater efficacy than EGFRi alone, which is attributable to broader targeting of the heterogeneous EGFRi-tolerance mechanisms present in tumors. Overall, this approach facilitates thorough examination of clonal evolution in response to therapy that could inform the development of improved diagnostic approaches and treatment strategies for targeting drug-tolerant cells. SIGNIFICANCE: The evolution and heterogeneity of EGFR inhibitor tolerance are identified in a large number of clones at enhanced cellular and temporal resolution using an expressed barcode technology coupled with single-cell RNA sequencing.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Receptores ErbB/genética , Receptores ErbB/metabolismo , Recidiva Local de Neoplasia , Tolerância a Medicamentos
4.
Cancer Immunol Res ; 11(6): 777-791, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37040466

RESUMO

High levels of IL1ß can result in chronic inflammation, which in turn can promote tumor growth and metastasis. Inhibition of IL1ß could therefore be a promising therapeutic option in the treatment of cancer. Here, the effects of IL1ß blockade induced by the mAbs canakinumab and gevokizumab were evaluated alone or in combination with docetaxel, anti-programmed cell death protein 1 (anti-PD-1), anti-VEGFα, and anti-TGFß treatment in syngeneic and humanized mouse models of cancers of different origin. Canakinumab and gevokizumab did not show notable efficacy as single-agent therapies; however, IL1ß blockade enhanced the effectiveness of docetaxel and anti-PD-1. Accompanying these effects, blockade of IL1ß alone or in combination induced significant remodeling of the tumor microenvironment (TME), with decreased numbers of immune suppressive cells and increased tumor infiltration by dendritic cells (DC) and effector T cells. Further investigation revealed that cancer-associated fibroblasts (CAF) were the cell type most affected by treatment with canakinumab or gevokizumab in terms of change in gene expression. IL1ß inhibition drove phenotypic changes in CAF populations, particularly those with the ability to influence immune cell recruitment. These results suggest that the observed remodeling of the TME following IL1ß blockade may stem from changes in CAF populations. Overall, the results presented here support the potential use of IL1ß inhibition in cancer treatment. Further exploration in ongoing clinical studies will help identify the best combination partners for different cancer types, cancer stages, and lines of treatment.


Assuntos
Interleucina-1beta , Neoplasias , Microambiente Tumoral , Animais , Camundongos , Linhagem Celular Tumoral , Docetaxel/farmacologia , Imunidade , Imunoterapia , Neoplasias/tratamento farmacológico , Interleucina-1beta/antagonistas & inibidores
5.
Mol Cancer Res ; 20(3): 361-372, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34799403

RESUMO

Various subunits of mammalian SWI/SNF chromatin remodeling complexes display loss-of-function mutations characteristic of tumor suppressors in different cancers, but an additional role for SWI/SNF supporting cell survival in distinct cancer contexts is emerging. In particular, genetic dependence on the catalytic subunit BRG1/SMARCA4 has been observed in acute myelogenous leukemia (AML), yet the feasibility of direct therapeutic targeting of SWI/SNF catalytic activity in leukemia remains unknown. Here, we evaluated the activity of dual BRG1/BRM ATPase inhibitors across a genetically diverse panel of cancer cell lines and observed that hematopoietic cancer cell lines were among the most sensitive compared with other lineages. This result was striking in comparison with data from pooled short hairpin RNA screens, which showed that only a subset of leukemia cell lines display sensitivity to BRG1 knockdown. We demonstrate that combined genetic knockdown of BRG1 and BRM is required to recapitulate the effects of dual inhibitors, suggesting that SWI/SNF dependency in human leukemia extends beyond a predominantly BRG1-driven mechanism. Through gene expression and chromatin accessibility studies, we show that the dual inhibitors act at genomic loci associated with oncogenic transcription factors, and observe a downregulation of leukemic pathway genes, including MYC, a well-established target of BRG1 activity in AML. Overall, small-molecule inhibition of BRG1/BRM induced common transcriptional responses across leukemia models resulting in a spectrum of cellular phenotypes. IMPLICATIONS: Our studies reveal the breadth of SWI/SNF dependency in leukemia and support targeting SWI/SNF catalytic function as a potential therapeutic strategy in AML.


Assuntos
Adenosina Trifosfatases , Leucemia Mieloide Aguda , Adenosina Trifosfatases/genética , Animais , Carcinogênese , Montagem e Desmontagem da Cromatina , DNA Helicases/genética , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Mamíferos/genética , Mamíferos/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Mol Cancer Res ; 19(6): 1063-1075, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33707308

RESUMO

Half of advanced human melanomas are driven by mutant BRAF and dependent on MAPK signaling. Interestingly, the results of three independent genetic screens highlight a dependency of BRAF-mutant melanoma cell lines on BRAF and ERK2, but not ERK1. ERK2 is expressed higher in melanoma compared with other cancer types and higher than ERK1 within melanoma. However, ERK1 and ERK2 are similarly required in primary human melanocytes transformed with mutant BRAF and are expressed at a similar, lower amount compared with established cancer cell lines. ERK1 can compensate for ERK2 loss as seen by expression of ERK1 rescuing the proliferation arrest mediated by ERK2 loss (both by shRNA or inhibition by an ERK inhibitor). ERK2 knockdown, as opposed to ERK1 knockdown, led to more robust suppression of MAPK signaling as seen by RNA-sequencing, qRT-PCR, and Western blot analysis. In addition, treatment with MAPK pathway inhibitors led to gene expression changes that closely resembled those seen upon knockdown of ERK2 but not ERK1. Together, these data demonstrate that ERK2 drives BRAF-mutant melanoma gene expression and proliferation as a function of its higher expression compared with ERK1. Selective inhibition of ERK2 for the treatment of melanomas may spare the toxicity associated with pan-ERK inhibition in normal tissues. IMPLICATIONS: BRAF-mutant melanomas overexpress and depend on ERK2 but not ERK1, suggesting that ERK2-selective inhibition may be toxicity sparing.


Assuntos
Proliferação de Células/genética , Sistema de Sinalização das MAP Quinases/genética , Melanoma/genética , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/genética , Mutação , Proteínas Proto-Oncogênicas B-raf/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Células Cultivadas , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Melanoma/metabolismo , Melanoma/patologia , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/metabolismo , Interferência de RNA , RNA-Seq/métodos
7.
Cancer Res ; 81(11): 3079-3091, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33504557

RESUMO

p53 is a transcription factor that plays a central role in guarding the genomic stability of cells through cell-cycle arrest or induction of apoptosis. However, the effects of p53 in antitumor immunity are poorly understood. To investigate the role of p53 in controlling tumor-immune cell cross-talk, we studied murine syngeneic models treated with HDM201, a potent and selective second-generation MDM2 inhibitor. In response to HDM201 treatment, the percentage of dendritic cells increased, including the CD103+ antigen cross-presenting subset. Furthermore, HDM201 increased the percentage of Tbet+Eomes+ CD8+ T cells and the CD8+/Treg ratio within the tumor. These immunophenotypic changes were eliminated with the knockout of p53 in tumor cells. Enhanced expression of CD80 on tumor cells was observed in vitro and in vivo, which coincided with T-cell-mediated tumor cell killing. Combining HDM201 with PD-1 or PD-L1 blockade increased the number of complete tumor regressions. Responding mice developed durable, antigen-specific memory T cells and rejected subsequent tumor implantation. Importantly, antitumor activity of HDM201 in combination with PD-1/PD-L1 blockade was abrogated in p53-mutated and knockout syngeneic tumor models, indicating the effect of HDM201 on the tumor is required for triggering antitumor immunity. Taken together, these results demonstrate that MDM2 inhibition triggers adaptive immunity, which is further enhanced by blockade of PD-1/PD-L1 pathway, thereby providing a rationale for combining MDM2 inhibitors and checkpoint blocking antibodies in patients with wild-type p53 tumors. SIGNIFICANCE: This study provides a mechanistic rationale for combining checkpoint blockade immunotherapy with MDM2 inhibitors in patients with wild-type p53 tumors.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Neoplasias do Colo/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Células Estromais/imunologia , Microambiente Tumoral/imunologia , Proteína Supressora de Tumor p53/antagonistas & inibidores , Animais , Apoptose , Proliferação de Células , Neoplasias do Colo/imunologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Quimioterapia Combinada , Feminino , Humanos , Imidazóis/farmacologia , Inibidores de Checkpoint Imunológico/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Nus , Pirimidinas/farmacologia , Pirróis/farmacologia , Células Estromais/efeitos dos fármacos , Células Tumorais Cultivadas , Microambiente Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Cancer Immunol Res ; 9(1): 34-49, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33177106

RESUMO

CD3-bispecific antibodies represent an important therapeutic strategy in oncology. These molecules work by redirecting cytotoxic T cells to antigen-bearing tumor cells. Although CD3-bispecific antibodies have been developed for several clinical indications, cases of cancer-derived resistance are an emerging limitation to the more generalized application of these molecules. Here, we devised whole-genome CRISPR screens to identify cancer resistance mechanisms to CD3-bispecific antibodies across multiple targets and cancer types. By validating the screen hits, we found that deficiency in IFNγ signaling has a prominent role in cancer resistance. IFNγ functioned by stimulating the expression of T-cell killing-related molecules in a cell type-specific manner. By assessing resistance to the clinical CD3-bispecific antibody flotetuzumab, we identified core fucosylation as a critical pathway to regulate flotetuzumab binding to the CD123 antigen. Disruption of this pathway resulted in significant resistance to flotetuzumab treatment. Proper fucosylation of CD123 was required for its normal biological functions. In order to treat the resistance associated with fucosylation loss, flotetuzumab in combination with an alternative targeting CD3-bispecific antibody demonstrated superior efficacy. Together, our study reveals multiple mechanisms that can be targeted to enhance the clinical potential of current and future T-cell-engaging CD3-bispecific antibody therapies.


Assuntos
Anticorpos Biespecíficos/farmacologia , Antineoplásicos/farmacologia , Complexo CD3/imunologia , Linfócitos T Citotóxicos/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Humanos , Imunoterapia , Interferon gama/farmacologia , Subunidade alfa de Receptor de Interleucina-3/imunologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos NOD , Linfócitos T Citotóxicos/imunologia
9.
Cancer Res ; 80(19): 4278-4287, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32747364

RESUMO

Advanced ovarian cancers are a leading cause of cancer-related death in women and are currently treated with surgery and chemotherapy. This standard of care is often temporarily successful but exhibits a high rate of relapse, after which, treatment options are few. Here we investigate whether biomarker-guided use of multiple targeted therapies, including small molecules and antibody-drug conjugates, is a viable alternative. A panel of patient-derived ovarian cancer xenografts (PDX), similar in genetics and chemotherapy responsiveness to human tumors, was exposed to 21 monotherapies and combination therapies. Three monotherapies and one combination were found to be active in different subsets of PDX. Analysis of gene expression data identified biomarkers associated with responsiveness to each of the three targeted therapies, none of which directly inhibits an oncogenic driver. While no single treatment had as high a response rate as chemotherapy, nearly 90% of PDXs were eligible for and responded to at least one biomarker-guided treatment, including tumors resistant to standard chemotherapy. The distribution of biomarker positivity in The Cancer Genome Atlas data suggests the potential for a similar precision approach in human patients. SIGNIFICANCE: This study exploits a panel of patient-derived xenografts to demonstrate that most ovarian tumors can be matched to effective biomarker-guided treatments.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Biomarcadores Tumorais/genética , Neoplasias Ovarianas/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Antineoplásicos/farmacologia , Carcinoma Epitelial do Ovário/tratamento farmacológico , Carcinoma Epitelial do Ovário/genética , Carcinoma Epitelial do Ovário/mortalidade , Carcinoma Epitelial do Ovário/patologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Terapia de Alvo Molecular/métodos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/mortalidade , Neoplasias Ovarianas/patologia , Medicina de Precisão , Estudo de Prova de Conceito
10.
Mol Cancer Ther ; 19(10): 2186-2195, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32747420

RESUMO

Uveal melanoma is a rare and aggressive cancer that originates in the eye. Currently, there are no approved targeted therapies and very few effective treatments for this cancer. Although activating mutations in the G protein alpha subunits, GNAQ and GNA11, are key genetic drivers of the disease, few additional drug targets have been identified. Recently, studies have identified context-specific roles for the mammalian SWI/SNF chromatin remodeling complexes (also known as BAF/PBAF) in various cancer lineages. Here, we find evidence that the SWI/SNF complex is essential through analysis of functional genomics screens and further validation in a panel of uveal melanoma cell lines using both genetic tools and small-molecule inhibitors of SWI/SNF. In addition, we describe a functional relationship between the SWI/SNF complex and the melanocyte lineage-specific transcription factor Microphthalmia-associated Transcription Factor, suggesting that these two factors cooperate to drive a transcriptional program essential for uveal melanoma cell survival. These studies highlight a critical role for SWI/SNF in uveal melanoma, and demonstrate a novel path toward the treatment of this cancer.


Assuntos
Cromatina/metabolismo , Melanoma/genética , Neoplasias Uveais/genética , Animais , Linhagem Celular Tumoral , Proteínas Cromossômicas não Histona , Humanos , Camundongos , Fatores de Transcrição
11.
Oncotarget ; 11(11): 956-968, 2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32215184

RESUMO

The histone 3 lysine 79 (H3K79) methyltransferase (HMT) DOT1L is known to play a critical role for growth and survival of MLL-rearranged leukemia. Serendipitous observations during high-throughput drug screens indicated that the use of DOT1L inhibitors might be expandable to multiple myeloma (MM). Through pharmacologic and genetic experiments, we could validate that DOT1L is essential for growth and viability of a subset of MM cell lines, in line with a recent report from another team. In vivo activity against established MM xenografts was observed with a novel DOT1L inhibitor. In order to understand the molecular mechanism of the dependency in MM, we examined gene expression changes upon DOT1L inhibition in sensitive and insensitive cell lines and discovered that genes belonging to the endoplasmic reticulum (ER) stress pathway and protein synthesis machinery were specifically suppressed in sensitive cells. Whole-genome CRISPR screens in the presence or absence of a DOT1L inhibitor revealed that concomitant targeting of the H3K4me3 methyltransferase SETD1B increases the effect of DOT1L inhibition. Our results provide a strong basis for further investigating DOT1L and SETD1B as targets in MM.

12.
Cell Rep ; 29(4): 889-903.e10, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31644911

RESUMO

Notwithstanding the positive clinical impact of endocrine therapies in estrogen receptor-alpha (ERα)-positive breast cancer, de novo and acquired resistance limits the therapeutic lifespan of existing drugs. Taking the position that resistance is nearly inevitable, we undertook a study to identify and exploit targetable vulnerabilities that were manifest in endocrine therapy-resistant disease. Using cellular and mouse models of endocrine therapy-sensitive and endocrine therapy-resistant breast cancer, together with contemporary discovery platforms, we identified a targetable pathway that is composed of the transcription factors FOXA1 and GRHL2, a coregulated target gene, the membrane receptor LYPD3, and the LYPD3 ligand, AGR2. Inhibition of the activity of this pathway using blocking antibodies directed against LYPD3 or AGR2 inhibits the growth of endocrine therapy-resistant tumors in mice, providing the rationale for near-term clinical development of humanized antibodies directed against these proteins.


Assuntos
Fator 3-alfa Nuclear de Hepatócito/metabolismo , Neoplasias Mamárias Experimentais/metabolismo , Fatores de Transcrição/metabolismo , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/uso terapêutico , Moléculas de Adesão Celular/imunologia , Moléculas de Adesão Celular/metabolismo , Resistencia a Medicamentos Antineoplásicos , Receptor alfa de Estrogênio/genética , Feminino , Proteínas Ligadas por GPI/imunologia , Proteínas Ligadas por GPI/metabolismo , Humanos , Células MCF-7 , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/genética , Camundongos , Mucoproteínas/imunologia , Mucoproteínas/metabolismo , Proteínas Oncogênicas/imunologia , Proteínas Oncogênicas/metabolismo
13.
Mol Cancer Ther ; 18(12): 2421-2432, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31527224

RESUMO

Inhibitors targeting BRAF and its downstream kinase MEK produce robust response in patients with advanced BRAF V600-mutant melanoma. However, the duration and depth of response vary significantly between patients; therefore, predicting response a priori remains a significant challenge. Here, we utilized the Novartis collection of patient-derived xenografts to characterize transcriptional alterations elicited by BRAF and MEK inhibitors in vivo, in an effort to identify mechanisms governing differential response to MAPK inhibition. We show that the expression of an MITF-high, "epithelial-like" transcriptional program is associated with reduced sensitivity and adaptive response to BRAF and MEK inhibitor treatment. On the other hand, xenograft models that express an MAPK-driven "mesenchymal-like" transcriptional program are preferentially sensitive to MAPK inhibition. These gene-expression programs are somewhat similar to the MITF-high and -low phenotypes described in cancer cell lines, but demonstrate an inverse relationship with drug response. This suggests a discrepancy between in vitro and in vivo experimental systems that warrants future investigations. Finally, BRAF V600-mutant melanoma relies on either MAPK or alternative pathways for survival under BRAF and MEK inhibition in vivo, which in turn predicts their response to further pathway suppression using a combination of BRAF, MEK, and ERK inhibitors. Our findings highlight the intertumor heterogeneity in BRAF V600-mutant melanoma, and the need for precision medicine strategies to target this aggressive cancer.


Assuntos
MAP Quinase Quinase 2/antagonistas & inibidores , Sistema de Sinalização das MAP Quinases/genética , Proteínas Proto-Oncogênicas B-raf/genética , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Camundongos
14.
Oncogene ; 38(37): 6399-6413, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31324888

RESUMO

Evolved resistance to tyrosine kinase inhibitor (TKI)-targeted therapies remains a major clinical challenge. In epidermal growth factor receptor (EGFR) mutant non-small-cell lung cancer (NSCLC), failure of EGFR TKIs can result from both genetic and epigenetic mechanisms of acquired drug resistance. Widespread reports of histologic and gene expression changes consistent with an epithelial-to-mesenchymal transition (EMT) have been associated with initially surviving drug-tolerant persister cells, which can seed bona fide genetic mechanisms of resistance to EGFR TKIs. While therapeutic approaches targeting fully resistant cells, such as those harboring an EGFRT790M mutation, have been developed, a clinical strategy for preventing the emergence of persister cells remains elusive. Using mesenchymal cell lines derived from biopsies of patients who progressed on EGFR TKI as surrogates for persister populations, we performed whole-genome CRISPR screening and identified fibroblast growth factor receptor 1 (FGFR1) as the top target promoting survival of mesenchymal EGFR mutant cancers. Although numerous previous reports of FGFR signaling contributing to EGFR TKI resistance in vitro exist, the data have not yet been sufficiently compelling to instigate a clinical trial testing this hypothesis, nor has the role of FGFR in promoting the survival of persister cells been elucidated. In this study, we find that combining EGFR and FGFR inhibitors inhibited the survival and expansion of EGFR mutant drug-tolerant cells over long time periods, preventing the development of fully resistant cancers in multiple vitro models and in vivo. These results suggest that dual EGFR and FGFR blockade may be a promising clinical strategy for both preventing and overcoming EMT-associated acquired drug resistance and provide motivation for the clinical study of combined EGFR and FGFR inhibition in EGFR-mutated NSCLCs.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Neoplasias Pulmonares , Inibidores de Proteínas Quinases/uso terapêutico , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Resistencia a Medicamentos Antineoplásicos/genética , Transição Epitelial-Mesenquimal/genética , Receptores ErbB/genética , Receptores ErbB/fisiologia , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Terapia de Alvo Molecular , Mutação , Inibidores de Proteínas Quinases/farmacologia , RNA Interferente Pequeno/farmacologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Mol Cancer Res ; 17(1): 199-211, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30201825

RESUMO

The most frequent genetic alterations in melanoma are gain-of-function (GOF) mutations in BRAF, which result in RAF-MEK-ERK signaling pathway addiction. Despite therapeutic success of RAF and MEK inhibitors in treating BRAFV600-mutant tumors, a major challenge is the inevitable emergence of drug resistance, which often involves reactivation of the MAPK pathway. Interestingly, resistant tumors are often sensitive to drug withdrawal, suggesting that hyperactivation of the MAPK pathway is not tolerated. To further characterize this phenomenon, isogenic models of inducible MAPK hyperactivation in BRAFV600E melanoma cells were generated by overexpression of ERK2. Using this model system, supraphysiologic levels of MAPK signaling led to cell death, which was reversed by MAPK inhibition. Furthermore, complete tumor regression was observed in an ERK2-overexpressing xenograft model. To identify mediators of MAPK hyperactivation-induced cell death, a large-scale pooled shRNA screen was conducted, which revealed that only shRNAs against BRAF and MAP2K1 rescued loss of cell viability. This suggested that no single downstream ERK2 effector was required, consistent with pleiotropic effects on multiple cellular stress pathways. Intriguingly, the detrimental effect of MAPK hyperactivation could be partially attributed to secreted factors, and more than 100 differentially secreted proteins were identified. The effect of ERK2 overexpression was highly context dependent, as RAS/RAF mutant but not RAS/RAF wild-type melanoma were sensitive to this perturbation. IMPLICATIONS: This vulnerability to MAPK hyperactivation raises the possibility of novel therapeutic approaches for RAS/RAF-mutant cancers.


Assuntos
Sistema de Sinalização das MAP Quinases , Melanoma/genética , Melanoma/metabolismo , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas ras/metabolismo , Animais , Apoptose/fisiologia , Linhagem Celular Tumoral , Feminino , Xenoenxertos , Humanos , Melanoma/patologia , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/biossíntese , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Mutação , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas ras/genética
16.
Biochem Biophys Res Commun ; 508(1): 109-116, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30527810

RESUMO

Recent studies have highlighted that cancer cells with a loss of the SWI/SNF complex catalytic subunit BRG1 are dependent on the remaining ATPase, BRM, making it an attractive target for cancer therapy. However, an understanding of the extent of target inhibition required to arrest cell growth, necessary to develop an appropriate therapeutic strategy, remains unknown. Here, we utilize tunable depletion of endogenous BRM using the SMASh degron, and interestingly observe that BRG1-mutant lung cancer cells require near complete depletion of BRM to robustly inhibit growth both in vitro and in vivo. Therefore, to identify pathways that synergize with partial BRM depletion and afford a deeper response, we performed a genome-wide CRISPR screen and discovered a combinatorial effect between BRM depletion and the knockout of various genes of the oxidative phosphorylation pathway and the anti-apoptotic gene MCL1. Together these studies provide an important framework to elucidate the requirements of BRM inhibition in the BRG1-mutant state with implications on the feasibility of targeting BRM alone, as well as reveal novel insights into pathways that can be exploited in combination toward deeper anti-tumor responses.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , DNA Helicases/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Proteínas Nucleares/genética , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Animais , Antineoplásicos/administração & dosagem , Sistemas CRISPR-Cas , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , DNA Helicases/metabolismo , Feminino , Técnicas de Inativação de Genes , Humanos , Isoquinolinas/administração & dosagem , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Nus , Mutação , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteínas Nucleares/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Proteólise , Sulfonamidas/administração & dosagem , Fatores de Transcrição/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Nat Med ; 25(1): 95-102, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30559422

RESUMO

Interferons (IFNs) are cytokines that play a critical role in limiting infectious and malignant diseases 1-4 . Emerging data suggest that the strength and duration of IFN signaling can differentially impact cancer therapies, including immune checkpoint blockade 5-7 . Here, we characterize the output of IFN signaling, specifically IFN-stimulated gene (ISG) signatures, in primary tumors from The Cancer Genome Atlas. While immune infiltration correlates with the ISG signature in some primary tumors, the existence of ISG signature-positive tumors without evident infiltration of IFN-producing immune cells suggests that cancer cells per se can be a source of IFN production. Consistent with this hypothesis, analysis of patient-derived tumor xenografts propagated in immune-deficient mice shows evidence of ISG-positive tumors that correlates with expression of human type I and III IFNs derived from the cancer cells. Mechanistic studies using cell line models from the Cancer Cell Line Encyclopedia that harbor ISG signatures demonstrate that this is a by-product of a STING-dependent pathway resulting in chronic tumor-derived IFN production. This imposes a transcriptional state on the tumor, poising it to respond to the aberrant accumulation of double-stranded RNA (dsRNA) due to increased sensor levels (MDA5, RIG-I and PKR). By interrogating our functional short-hairpin RNA screen dataset across 398 cancer cell lines, we show that this ISG transcriptional state creates a novel genetic vulnerability. ISG signature-positive cancer cells are sensitive to the loss of ADAR, a dsRNA-editing enzyme that is also an ISG. A genome-wide CRISPR genetic suppressor screen reveals that the entire type I IFN pathway and the dsRNA-activated kinase, PKR, are required for the lethality induced by ADAR depletion. Therefore, tumor-derived IFN resulting in chronic signaling creates a cellular state primed to respond to dsRNA accumulation, rendering ISG-positive tumors susceptible to ADAR loss.


Assuntos
Adenosina Desaminase/metabolismo , Interferons/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Humanos , Proteínas de Membrana/metabolismo , Camundongos Nus , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Supressão Genética , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Cell ; 170(3): 577-592.e10, 2017 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-28753431

RESUMO

Elucidation of the mutational landscape of human cancer has progressed rapidly and been accompanied by the development of therapeutics targeting mutant oncogenes. However, a comprehensive mapping of cancer dependencies has lagged behind and the discovery of therapeutic targets for counteracting tumor suppressor gene loss is needed. To identify vulnerabilities relevant to specific cancer subtypes, we conducted a large-scale RNAi screen in which viability effects of mRNA knockdown were assessed for 7,837 genes using an average of 20 shRNAs per gene in 398 cancer cell lines. We describe findings of this screen, outlining the classes of cancer dependency genes and their relationships to genetic, expression, and lineage features. In addition, we describe robust gene-interaction networks recapitulating both protein complexes and functional cooperation among complexes and pathways. This dataset along with a web portal is provided to the community to assist in the discovery and translation of new therapeutic approaches for cancer.


Assuntos
Neoplasias/genética , Neoplasias/patologia , Interferência de RNA , Linhagem Celular Tumoral , Biblioteca Gênica , Redes Reguladoras de Genes , Humanos , Complexos Multiproteicos/metabolismo , Neoplasias/metabolismo , Oncogenes , RNA Interferente Pequeno , Transdução de Sinais , Fatores de Transcrição/metabolismo
20.
Mol Cancer Res ; 15(10): 1431-1444, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28655712

RESUMO

Alterations in MEK1/2 occur in cancers, both in the treatment-naïve state and following targeted therapies, most notably BRAF and MEK inhibitors in BRAF-V600E-mutant melanoma and colorectal cancer. Efforts were undertaken to understand the effects of these mutations, based upon protein structural location, and MEK1/2 activity. Two categories of MEK1/2 alterations were evaluated, those associated with either the allosteric pocket or helix-A. Clinically, MEK1/2 alterations of the allosteric pocket are rare and we demonstrate that they confer resistance to MEK inhibitors, while retaining sensitivity to BRAF inhibition. Most mutations described in patients fall within, or are associated with, helix-A. Mutations in this region reduce sensitivity to both BRAF and MEK inhibition and display elevated phospho-ERK1/2 levels, independent from increases in phospho-MEK1/2. Biochemical experiments with a representative helix-A variant, MEK1-Q56P, reveal both increased catalytic efficiency of the activated enzyme, and phosphorylation-independent activity relative to wild-type MEK1. Consistent with these findings, MEK1/2 alterations in helix A retain sensitivity to downstream antagonism via pharmacologic inhibition of ERK1/2. This work highlights the importance of classifying mutations based on structural and phenotypic consequences, both in terms of pathway signaling output and response to pharmacologic inhibition.Implications: This study suggests that alternate modes of target inhibition, such as ERK inhibition, will be required to effectively treat tumors harboring these MEK1/2-resistant alleles. Mol Cancer Res; 15(10); 1431-44. ©2017 AACR.


Assuntos
Neoplasias Colorretais/genética , MAP Quinase Quinase 1/genética , MAP Quinase Quinase 2/genética , Mutação , Inibidores de Proteínas Quinases/farmacologia , Quinases raf/metabolismo , Sítio Alostérico , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , MAP Quinase Quinase 1/química , MAP Quinase Quinase 1/metabolismo , MAP Quinase Quinase 2/química , MAP Quinase Quinase 2/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Modelos Moleculares , Fosforilação , Estrutura Secundária de Proteína , Proteínas Proto-Oncogênicas B-raf/química , Proteínas Proto-Oncogênicas B-raf/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...