Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38791367

RESUMO

The pathogenicity of many bacteria, including Bacillus cereus and Staphylococcus aureus, depends on pore-forming toxins (PFTs), which cause the lysis of host cells by forming pores in the membranes of eukaryotic cells. Bioinformatic analysis revealed a region homologous to the Lys171-Gly250 sequence in hemolysin II (HlyII) from B. cereus in over 600 PFTs, which we designated as a "homologous peptide". Three ß-barrel PFTs were used for a detailed comparative analysis. Two of them-HlyII and cytotoxin K2 (CytK2)-are synthesized in Bacillus cereus sensu lato; the third, S. aureus α-toxin (Hla), is the most investigated representative of the family. Protein modeling showed certain amino acids of the homologous peptide to be located on the surface of the monomeric forms of these ß-barrel PFTs. We obtained monoclonal antibodies against both a cloned homologous peptide and a 14-membered synthetic peptide, DSFNTFYGNQLFMK, as part of the homologous peptide. The HlyII, CytK2, and Hla regions recognized by the obtained antibodies, as well as an antibody capable of suppressing the hemolytic activity of CytK2, were identified in the course of this work. Antibodies capable of recognizing PFTs of various origins can be useful tools for both identification and suppression of the cytolytic activity of PFTs.


Assuntos
Bacillus cereus , Toxinas Bacterianas , Proteínas Hemolisinas , Staphylococcus aureus , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Bacillus cereus/metabolismo , Proteínas Hemolisinas/química , Proteínas Hemolisinas/metabolismo , Staphylococcus aureus/metabolismo , Sequência de Aminoácidos , Hemólise , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Modelos Moleculares , Animais , Anticorpos Monoclonais/química , Humanos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo
2.
Antioxidants (Basel) ; 12(11)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38001867

RESUMO

Plants are exposed to a variety of abiotic and biotic stresses leading to increased formation of reactive oxygen species (ROS) in plant cells. ROS are capable of oxidizing proteins, pigments, lipids, nucleic acids, and other cell molecules, disrupting their functional activity. During the process of evolution, numerous antioxidant systems were formed in plants, including antioxidant enzymes and low molecular weight non-enzymatic antioxidants. Antioxidant systems perform neutralization of ROS and therefore prevent oxidative damage of cell components. In the present review, we focus on the biosynthesis of non-enzymatic antioxidants in higher plants cells such as ascorbic acid (vitamin C), glutathione, flavonoids, isoprenoids, carotenoids, tocopherol (vitamin E), ubiquinone, and plastoquinone. Their functioning and their reactivity with respect to individual ROS will be described. This review is also devoted to the modern genetic engineering methods, which are widely used to change the quantitative and qualitative content of the non-enzymatic antioxidants in cultivated plants. These methods allow various plant lines with given properties to be obtained in a rather short time. The most successful approaches for plant transgenesis and plant genome editing for the enhancement of biosynthesis and the content of these antioxidants are discussed.

3.
Int J Mol Sci ; 24(22)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38003626

RESUMO

Hemolysin II (HlyII)-one of the pathogenic factors of Bacillus cereus, a pore-forming ß-barrel toxin-possesses a C-terminal extension of 94 amino acid residues, designated as the C-terminal domain of HlyII (HlyIICTD), which plays an important role in the functioning of the toxin. Our previous work described a monoclonal antibody (HlyIIC-20), capable of strain-specific inhibition of hemolysis caused by HlyII, and demonstrated the dependence of the efficiency of hemolysis on the presence of proline at position 324 in HlyII outside the conformational antigenic determinant. In this work, we studied 16 mutant forms of HlyIICTD. Each of the mutations, obtained via multiple site-directed mutagenesis leading to the replacement of amino acid residues lying on the surface of the 3D structure of HlyIICTD, led to a decrease in the interaction of HlyIIC-20 with the mutant form of the protein. Changes in epitope structure confirm the high conformational mobility of HlyIICTD required for the functioning of HlyII. Comparison of the effect of the introduced mutations on the effectiveness of interactions between HlyIICTD and HlyIIC-20 and a control antibody recognizing a non-overlapping epitope enabled the identification of the amino acid residues N339 and K340, included in the conformational antigenic determinant recognized by HlyIIC-20.


Assuntos
Bacillus cereus , Proteínas Hemolisinas , Humanos , Bacillus cereus/genética , Bacillus cereus/metabolismo , Proteínas Hemolisinas/metabolismo , Substituição de Aminoácidos , Epitopos/genética , Epitopos/metabolismo , Hemólise/genética , Aminoácidos/genética , Aminoácidos/metabolismo
4.
Plants (Basel) ; 12(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37176821

RESUMO

The knockout of the At2g28210 gene encoding α-carbonic anhydrase 2 (α-CA2) in Arabidopsis thaliana (Columbia) led to alterations in photosynthetic processes. The effective quantum yields of both photosystem II (PSII) and photosystem I (PSI) were higher in α-carbonic anhydrase 2 knockout plants (α-CA2-KO), and the reduction state of plastoquinone pool was lower than in wild type (WT). The electron transport rate in the isolated thylakoids measured with methyl viologen was higher in α-CA2-KO plants. The amounts of reaction centers of PSII and PSI were similar in WT and α-CA2-KO plants. The non-photochemical quenching of chlorophyll a fluorescence in α-CA2-KO leaves was lower at the beginning of illumination, but became slightly higher than in WT leaves when the steady state was achieved. The degree of state transitions in the leaves was lower in α-CA2-KO than in WT plants. Measurements of the electrochromic carotenoid absorbance shift (ECS) revealed that the light-dependent pH gradient (ΔpH) across the thylakoid membrane was lower in the leaves of α-CA2-KO plants than in WT plants. The starch content in α-CA2-KO leaves was lower than in WT plants. The expression levels of the genes encoding chloroplast CAs in α-CA2-KO changed noticeably, whereas the expression levels of genes of cytoplasmic CAs remained almost the same. It is proposed that α-CA2 may be situated in the chloroplasts.

5.
Molecules ; 28(8)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37110815

RESUMO

Hemolysin II (HlyII) is one of the virulence factors of the opportunistic bacterium Bacillus cereus belonging to the group of ß-pore-forming toxins. This work created a genetic construct encoding a large C-terminal fragment of the toxin (HlyIILCTD, M225-I412 according to the numbering of amino acid residues in HlyII). A soluble form of HlyIILCTD was obtained using the SlyD chaperone protein. HlyIILCTD was first shown to be capable of agglutinating rabbit erythrocytes. Monoclonal antibodies against HlyIILCTD were obtained by hybridoma technology. We also proposed a mode of rabbit erythrocyte agglutination by HlyIILCTD and selected three anti-HlyIILCTD monoclonal antibodies that inhibited the agglutination.


Assuntos
Bacillus cereus , Proteínas Hemolisinas , Animais , Coelhos , Bacillus cereus/metabolismo , Proteínas Hemolisinas/química , Proteínas de Bactérias/química , Eritrócitos/metabolismo , Anticorpos Monoclonais/metabolismo
6.
Microbiol Spectr ; 11(1): e0414122, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36622150

RESUMO

Acinetobacter baumannii is an antibiotic-resistant opportunistic pathogen, one of the main causes of hospital infections. There is an urgent need for the development of therapy strategies which are not based on antibiotics. Hybridoma technology was used to obtain monoclonal antibodies. The antibodies were characterized by enzyme immunoassay and fluorescence microscopy according to their ability to opsonize A. baumannii and to protect model animals from infection upon intraperitoneal and pulmonary injection. Monoclonal antibodies (MAbs), IgG, against the K9 capsular polysaccharide (CPS) of A. baumannii were prepared using a glycoconjugate, synthesized by squaric-acid chemistry, consisting of two CPS K9 monomer units and a carrier protein. The MAbs were highly specific, stained the bacterial surface, allowed detection of A. baumannii in infected lung tissue, effectively opsonized the bacteria at nanogram concentrations (up to 1.5 ng/mL for CPS-407), and demonstrated a high ability to protect an organism against bacterial infection upon intraperitoneal and lung injection. In intraperitoneal infection of a mouse model with A. baumannii K9, the CPS-407 antibody protected at a dose of 25 µg/mouse. When bacteria were injected into the lung, MAb therapy prevented infection of the body and led to a significant reduction of the bacterial load in infected tissues. IMPORTANCE MAbs detected A. baumannii in infected lung tissue, effectively opsonized bacteria, and protected model animals from infection.


Assuntos
Acinetobacter baumannii , Sepse , Camundongos , Animais , Anticorpos Monoclonais , Antibacterianos/farmacologia , Polissacarídeos/metabolismo , Sepse/microbiologia
7.
Ticks Tick Borne Dis ; 14(1): 102076, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36345066

RESUMO

The red fox (Vulpes vulpes) is the most widespread free-living carnivore in the world. Over the years, foxes have been recognized as hosts for a number of tick-borne pathogens. However, their role as reservoirs for zoonotic tick-borne diseases is poorly understood. The aim of our study was to investigate tick-borne pathogens in the red fox population in the Czech Republic. Out of 117 red foxes, 110 (94.02%) individuals tested positive for the presence of at least one pathogen by the combined PCR and sequencing approach. Hepatozoon canis was the most frequently detected pathogen (n = 95; 81.2%), followed by Babesia vulpes (n = 75; 64.1%). Babesia canis was not detected in our study. Four (3.42%) red foxes were positive for Candidatus Neoehrlichia sp., 3 (2.56%) for Anaplasma phagocytophilum, and one red fox (0.85%) tested positive for the presence of Ehrlichia sp. DNA. Overall, DNA of spirochetes from the Borrelia burgdorferi s.l. complex was detected in 8.6% of the foxes and B. miyamotoi in 5.12% of the samples. As a carnivore found in all ecosystems of Central Europe, foxes obviously contribute to transmission of tick-borne pathogens such as A. phagocytophilum, B. burgdorferi s.l., and B. myiamotoi. In addition, foxes apparently harbour a community of pathogens, associated with this host in local ecological context, dominated by H. canis and B. vulpes (possibly also Candidatus Neoehrlichia sp.). These species have the potential to spread to the domestic dog population and should be included in the differential diagnosis of febrile diseases with hematologic abnormalities in dogs.


Assuntos
Raposas , Carrapatos , Cães , Animais , Ecossistema , República Tcheca , Europa (Continente)
8.
Plants (Basel) ; 11(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36501340

RESUMO

An homozygous mutant line of Arabidopsis thaliana with a knocked out At4g20990 gene encoding thylakoid carbonic anhydrase αCA4 was created using a CRISPR/Cas9 genome editing system. The effects of the mutation were compared with those in two mutant lines obtained by the T-DNA insertion method. In αCA4 knockouts of all three lines, non-photochemical quenching of chlorophyll a fluorescence was lower than in the wild type (WT) plants due to a decrease in its energy-dependent component. The αCA4 knockout also affected the level of expression of the genes encoding all proteins of the PSII light harvesting antennae, the genes encoding cytoplasmic and thylakoid CAs and the genes induced by plant immune signals. The production level of starch synthesis during the light period, as well as the level of its utilization during the darkness, were significantly higher in these mutants than in WT plants. These data confirm that the previously observed differences between insertional mutants and WT plants were not the result of the negative effects of T-DNA insertion transgenesis but the results of αCA4 gene knockout. Overall, the data indicate the involvement of αCA4 in the photosynthetic reactions in the thylakoid membrane, in particular in processes associated with the protection of higher plants' photosynthetic apparatus from photoinhibition.

9.
Microbiol Spectr ; 10(5): e0167422, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-35980044

RESUMO

The clonal bacterial species Acinetobacter baumannii is an emerging multidrug-resistant pathogen which causes high-lethality infections. Cells of A. baumannii are surrounded by the type-specific capsular polysaccharide (CPS), which provides resistance to the protective mechanisms of the host and is considered a target for immunization. The conjugates of three inert carrier proteins and A. baumannii type K9 CPS fragments, which contained various numbers of oligosaccharide repeats (K-units), were synthesized by periodate oxidation and squaric acid chemistry. The conjugates were applied to immunize mice, and chemical synthesis by squaric acid was shown to significantly improve the immunogenic properties of glycoconjugate. In BALB/c mice, IgG antibodies were predominant among type K9 CPS reactive antibodies, and their total content was several times higher than that of IgM. Immune sera were characterized by their opsonization ability during practically the entire lives of the experimental mice. The sera were cross-reactive, but the highest specificity was observed against the antigen (type K9 CPS) used for immunization. The immunization of BALB/c and ICR-1 mice with a glycoconjugate without adjuvants led to varying degrees of stimulation of IL-10, IL-17A, and TNF-α production, but not IL-4 production in the ICR-1 mice. This is in contrast to the BALB/c mice, in which γ-IFN production was also activated. The protective effectiveness of the glycoconjugates obtained by squaric acid chemistry was demonstrated by experiments that involved challenging immunized and nonimmunized animals with a lethal dose of A. baumannii K9. IMPORTANCE Immunization by glycoconjugates with A. baumannii type K9 CPS fragments induced a high level of antibodies (predominantly IgG) in sera, which reacted specifically with the CPS of A. baumannii type K9, as well as a long immunological memory. The sera of immunized animals efficiently opsonized A. baumannii type K9. Immunization resulted in the balanced production of pro/anti-inflammatory lymphokines and protective antibodies to ensure the survival of the mice infected with A. baumannii. The level of specific antibodies was sufficient to provide protective immunity against the challenge by A. baumannii, making this approach applicable in the development of vaccine preparations.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Camundongos , Animais , Infecções por Acinetobacter/prevenção & controle , Infecções por Acinetobacter/microbiologia , Interleucina-10 , Interleucina-17 , Proteínas de Transporte , Fator de Necrose Tumoral alfa , Camundongos Endogâmicos ICR , Camundongos Endogâmicos BALB C , Glicoconjugados , Imunoglobulina G , Polissacarídeos , Soros Imunes , Imunoglobulina M , Oligossacarídeos , Imunidade , Anticorpos Antibacterianos , Vacinas Bacterianas , Polissacarídeos Bacterianos
10.
Plants (Basel) ; 11(16)2022 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-36015416

RESUMO

The carbonic anhydrase (CA) activities of the preparations of cytoplasm, mitochondria, chloroplast stroma, and chloroplast thylakoids, as well as the expression levels of genes encoding αCA1, αCA2, αCA4, ßCA1, ßCA2, ßCA3, ßCA4, ßCA5, and ßCA6, were measured in the leaves of Arabidopsis thaliana plants, acclimated to different CO2 content in the air: low (150 ppm, lCO2), normal (450 ppm, nCO2), and high (1200 ppm, hCO2). To evaluate the photosynthetic apparatus operation, the carbon assimilation and chlorophyll a fluorescence were measured under the same conditions. It was found that the CA activities of the preparations of cytoplasm, chloroplast stroma, and chloroplast thylakoids measured after two weeks of acclimation were higher, the lower CO2 concentration in the air. That was preceded by an increase in the expression levels of genes encoding the cytoplasmic form of ßCA1, and other cytoplasmic CAs, ßCA2, ßCA3, and ßCA4, as well as of the chloroplast CAs, ßCA5, and the stromal forms of ßCA1 in a short-term range 1-2 days after the beginning of the acclimation. The dependence on the CO2 content in the air was most noticeable for the CA activity of the preparations of the stroma; it was two orders higher in lCO2 plants than in hCO2 plants. The CA activity of thylakoid membranes from lCO2 plants was higher than that in nCO2 and hCO2 plants; however, in these plants, a significant increase in the expression levels of the genes encoding αCA2 and αCA4 located in thylakoid membranes was not observed. The CA activity of mitochondria and the expression level of the mitochondrial ßCA6 gene did not depend on the content of carbon dioxide. Taken together, the data implied that in the higher plants, the supply of inorganic carbon to carboxylation sites is carried out with the cooperative functioning of CAs located in the cytoplasm and CAs located in the chloroplasts.

11.
Microorganisms ; 10(6)2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35744693

RESUMO

Microorganisms capable of decomposing hydrophobic substrates in cold climates are of considerable interest both in terms of studying adaptive reactions to low temperatures and in terms of their application in biotechnologies for cleaning up oil spills in a crude-oil polluted soil. The aim of this work was to investigate the genome of Rhodococcus opacus S8 and explore behavior traits of this strain grown in the presence of hexadecane. The genome size of strain S8 is 8.78 Mb, of which the chromosome size is 7.75 Mb. The S8 strain contains 2 circular plasmids of 135 kb and 105 kb and a linear plasmid with a size of 788 kb. The analysis of the genome revealed the presence of genes responsible for the degradation of alkanes and synthesis of biosurfactants. The peculiarities of morphology of microbial cells when interacting with a hydrophobic substrate were revealed. An adaptive mechanism responsible in the absence of oxygen for maintaining the process of degradation of hexadecane is discussed. The data obtained show that the strain S8 has great potential to be used in biotechnologies.

12.
Int J Biol Macromol ; 200: 416-427, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35041890

RESUMO

Bacillus cereus hemolysin II, a pore-forming ß-barrel toxin (HlyII), has a C-terminal extension of 94 amino acid residues, designated as the C-terminal domain of HlyII (HlyIICTD). HlyIICTD is capable of forming oligomers in aqueous solutions. Oligomerization of HlyIICTD significantly increased in the presence of erythrocytes and liposomes. Its affinity for erythrocytes of various origins differed insignificantly but was noticeably higher for T-cells. HlyIICTD destroyed THP-1 monocytes and J774 macrophages, acted most effectively on Jurkat T-lymphocytes and had virtually no impact on B-cell lines. HlyIICTD was able to form ion-conducting channels on an artificial bilayer membrane.


Assuntos
Proteínas Hemolisinas
13.
Biochemistry (Mosc) ; 86(10): 1243-1255, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34903154

RESUMO

The review presents current data on carbonic anhydrases found in various compartments of photosynthetic cells of higher plants. The available data on expression of genes some of carbonic anhydrases and its dependence on environmental factors and plant age are considered. The existing hypotheses on the functions of carbonic anhydrases of plasma membrane, cytoplasm, as well as of stroma and thylakoids of chloroplast, first of all, the hypothesis on participation of these enzymes in supplying carbon dioxide molecules to ribulose-bisphosphate carboxylase (Rubisco) are analyzed. Difficulties of establishing physiological role of the plant cell carbonic anhydrase are discussed in detail.


Assuntos
Anidrases Carbônicas/metabolismo , Cloroplastos/metabolismo , Plantas/metabolismo , Dióxido de Carbono/metabolismo , Fotossíntese , Plantas/enzimologia , Ribulose-Bifosfato Carboxilase/metabolismo
14.
Sensors (Basel) ; 21(22)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34833687

RESUMO

The recognition of biomolecules is crucial in key areas such as the timely diagnosis of somatic and infectious diseases, food quality control, and environmental monitoring. This determines the need to develop highly sensitive display devices based on the achievements of modern science and technology, characterized by high selectivity, high speed, low cost, availability, and small size. Such requirements are met by biosensor systems-devices for reagent-free analysis of compounds that consist of a biologically sensitive element (receptor), a transducer, and a working solution. The diversity of biological material and methods for its immobilization on the surface or in the volume of the transducer and the use of nanotechnologies have led to the appearance of an avalanche-like number of different biosensors, which, depending on the type of biologically sensitive element, can be divided into three groups: enzyme, affinity, and cellular/tissue. Affinity biosensors are one of the rapidly developing areas in immunoassay, where the key point is to register the formation of an antigen-antibody complex. This review analyzes the latest work by Russian researchers concerning the production of molecules used in various immunoassay formats as well as new fundamental scientific data obtained as a result of their use.


Assuntos
Técnicas Biossensoriais , Anticorpos , Imunoensaio , Nanotecnologia , Federação Russa
15.
Front Plant Sci ; 12: 662082, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512677

RESUMO

We studied bicarbonate-induced stimulation of photophosphorylation in thylakoids isolated from leaves of Arabidopsis thaliana plants. This stimulation was not observed in thylakoids of wild-type in the presence of mafenide, a soluble carbonic anhydrase inhibitor, and was absent in thylakoids of two mutant lines lacking the gene encoding alpha carbonic anhydrase 5 (αCA5). Using mass spectrometry, we revealed the presence of αCA5 in stromal thylakoid membranes of wild-type plants. A possible mechanism of the photophosphorylation stimulation by bicarbonate that involves αCA5 is proposed.

16.
Protoplasma ; 258(2): 249-262, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33118061

RESUMO

The review describes the structures of plant carbonic anhydrases (CAs), enzymes catalyzing the interconversion of inorganic carbon forms and belonging to different families, as well as the interaction of inhibitors and activators of CA activity with the active sites of CAs in representatives of these families. We outline the data that shed light on the location of CAs in green cells of C3 plants, algae and angiosperms, with the emphasis on the recently obtained data. The proven and proposed functions of CAs in these organisms are listed. The possibility of the involvement of several chloroplast CAs in acceleration of the conversion of bicarbonate to CO2 and in supply of CO2 for fixation by Rubisco is particularly considered. Special attention is paid to CAs in various parts of thylakoids and to discussion about current knowledge of their possible physiological roles. The review states that, despite the significant progress in application of the mutants with suppressed CAs synthesis, the approach based on the use of the inhibitors of CA activity in some cases remains quite effective. Combination of these two approaches, namely determining the effect of CA activity inhibitors in plants with certain knocked-out CA genes, turns out to be very useful for understanding the functions of other CAs.


Assuntos
Anidrases Carbônicas/metabolismo , Células Vegetais/química , Plantas/química
17.
Toxins (Basel) ; 12(12)2020 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-33352744

RESUMO

Bacillus cereus is the fourth most common cause of foodborne illnesses that produces a variety of pore-forming proteins as the main pathogenic factors. B. cereus hemolysin II (HlyII), belonging to pore-forming ß-barrel toxins, has a C-terminal extension of 94 amino acid residues designated as HlyIICTD. An analysis of a panel of monoclonal antibodies to the recombinant HlyIICTD protein revealed the ability of the antibody HlyIIC-20 to inhibit HlyII hemolysis. A conformational epitope recognized by HlyIIC-20 was found. by the method of peptide phage display and found that it is localized in the N-terminal part of HlyIICTD. The HlyIIC-20 interacted with a monomeric form of HlyII, thus suppressing maturation of the HlyII toxin. Protection efficiencies of various B. cereus strains against HlyII were different and depended on the epitope amino acid composition, as well as, insignificantly, on downstream amino acids. Substitution of L324P and P324L in the hemolysins ATCC14579T and B771, respectively, determined the role of leucine localized to the epitope in suppressing the hemolysis by the antibody. Pre-incubation of HlyIIC-20 with HlyII prevented the death of mice up to an equimolar ratio. A strategy of detecting and neutralizing the toxic activity of HlyII could provide a tool for monitoring and reducing B. cereus pathogenicity.


Assuntos
Anticorpos Monoclonais/farmacologia , Bacillus cereus/efeitos dos fármacos , Proteínas de Bactérias/antagonistas & inibidores , Eritrócitos/efeitos dos fármacos , Proteínas Hemolisinas/antagonistas & inibidores , Hemólise/efeitos dos fármacos , Animais , Anticorpos Monoclonais/química , Bacillus cereus/química , Bacillus cereus/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Eritrócitos/metabolismo , Feminino , Proteínas Hemolisinas/química , Proteínas Hemolisinas/metabolismo , Hemólise/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Domínios Proteicos/efeitos dos fármacos , Domínios Proteicos/fisiologia , Estrutura Secundária de Proteína , Coelhos
18.
Funct Plant Biol ; 47(11): 959-969, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32564779

RESUMO

We investigated acclimatory responses of Arabidopsis plants to drought and salinity conditions before the appearance of obvious signs of damage caused by these factors. We detected changes indicating an increase in the reduction level of the chloroplast plastoquinone pool (PQ pool) 5-7 days after introduction of the stress factors. After 10-14 days, a decrease in the size of PSII light harvesting antenna was observed in plants under conditions of drought and salinity. This was confirmed by a decrease in content of PSII antenna proteins and by downregulation of gene expression levels of these proteins under the stress conditions. No changes in values of performance index and maximum quantum yield of PSII were detected. Under drought and salinity, the content of hydrogen peroxide in leaves was higher than in control leaves. Thus, we propose that reduction of the size of PSII antenna represents one of the universal mechanisms of acclimation of higher plants to stress factors and the downsizing already begins to manifest under mild stress conditions. Both the PQ pool reduction state and the hydrogen peroxide content are important factors needed for the observed rearrangement.


Assuntos
Arabidopsis , Complexo de Proteína do Fotossistema II , Aclimatação , Arabidopsis/genética , Folhas de Planta , Plastoquinona
19.
Artigo em Inglês | MEDLINE | ID: mdl-32178257

RESUMO

Ticks are important human and animal parasites and vectors of many infectious disease agents. Control of tick activity is an effective tool to reduce the risk of contracting tick-transmitted diseases. The castor bean tick (Ixodes ricinus) is the most common tick species in Europe. It is also a vector of the causative agents of Lyme borreliosis and tick-borne encephalitis, which are two of the most important arthropod-borne diseases in Europe. In recent years, increases in tick activity and incidence of tick-borne diseases have been observed in many European countries. These increases are linked to many ecological and anthropogenic factors such as landscape management, climate change, animal migration, and increased popularity of outdoor activities or changes in land usage. Tick activity is driven by many biotic and abiotic factors, some of which can be effectively managed to decrease risk of tick bites. In the USA, recommendations for landscape management, tick host control, and tick chemical control are well-defined for the applied purpose of reducing tick presence on private property. In Europe, where fewer studies have assessed tick management strategies, the similarity in ecological factors influencing vector presence suggests that approaches that work in USA may also be applicable. In this article we review key factors driving the tick exposure risk in Europe to select those most conducive to management for decreased tick-associated risk.


Assuntos
Encefalite Transmitida por Carrapatos , Ixodes , Doença de Lyme , Doenças Transmitidas por Carrapatos , Animais , Encefalite Transmitida por Carrapatos/terapia , Europa (Continente) , Humanos , Ixodes/patogenicidade , Doença de Lyme/terapia , Medição de Risco , Doenças Transmitidas por Carrapatos/terapia
20.
Protoplasma ; 257(2): 489-499, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31784823

RESUMO

The role of α-carbonic anhydrase 4 (α-CA4) in photosynthetic machinery functioning in thylakoid membranes was studied, using Arabidopsis thaliana wild type plants (WT) and the plants with knockout of At4g20990 gene encoding α-CA4 (αCA4-mut) grown both in low light (LL, 80 µmol quanta m-2 s-1) or in high light (HL, 400 µmol quanta m-2 s-1). It was found that a content of PsbS protein, one of determinants of non-photochemical quenching of chlorophyll fluorescence, increased in mutants by 30% and 100% compared with WT plants in LL and in HL, respectively. Violaxanthin cycle pigments content and violaxanthin deepoxidase activity in HL were also higher in αCA4-mut than in WT plants. The content of PSII core protein, D1, when adapting to HL, decreased in WT plants and remained unchanged in mutants. This indicates, that the decrease in the content of Lhcb1 and Lhcb2 proteins in HL (Rudenko et al. Protoplasma 55(1):69-78, 2018) in WT plants resulted from decrease of both Photosystem II (PSII) complex content and content of these proteins in this complex, whereas in αCA4-mut plants from the latter process only. The absence of α-CA4 did not affect the rate of electron transport through Photosystem I (PSI) in thylakoids of mutant vs. WT, but led to 50-80% increase in the rate of electron transport from H2O to QA, evidencing the location of α-CA4 close to PSII. The latter difference may raise the question about its causal connection with the difference in the D1 protein content change during adapting to increased illumination in the presence and the absence of α-CA4.


Assuntos
Anidrases Carbônicas/metabolismo , Fotossíntese/fisiologia , Folhas de Planta/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...