Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 127(42): 8955-8965, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37831543

RESUMO

We present a new approach to studying nanoparticle collisions using density functional based tight binding (DFTB). A novel DFTB parametrization has been developed to study the collision process of Sn and Si clusters (NPs) using molecular dynamics (MD). While bulk structures were used as training sets, we show that our model is able to accurately reproduce the cohesive energy of the nanoparticles using density functional theory (DFT) as a reference. A surprising variety of phenomena are revealed for the Si/Sn nanoparticle collisions, depending on the size and velocity of the collision: from core-shell structure formation to bounce-off phenomena.

2.
Phys Chem Chem Phys ; 23(5): 3281-3289, 2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33506828

RESUMO

Complex materials composed of two and three elements with high Li-ion storage capacity are investigated and tested as lithium-ion battery (LiB) negative electrodes. Namely, anodes containing tin, silicon, and graphite show very good performance because of the large gravimetric and volumetric capacity of silicon and structural support provided by tin and graphite. The performance of the composites during the first cycles was studied using ex situ magic angle spinning (MAS) 7Li Nuclear Magnetic Resonance (NMR), density functional theory (DFT) calculations, and electrochemical techniques. The best performance was obtained for Sn/Si/graphite in a 1 : 1 : 1 proportion, due to an emergent effect of the interaction between Sn and Si. The results suggest a stabilization effect of Sn over Si, providing a physical constraint that prevents Si pulverization. This mechanism ensures good cyclability over more than one hundred cycles, low capacity fading and high specific capacity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...